Skip to content

fcpp-experiments/slcs-optimisation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Optimised implementations of the SLCS logic in FCPP

Project for the experimental comparison of multiple implementations of the SLCS logic in FCPP.

All commands below are assumed to be issued from the cloned git repository folder. For any issues with reproducing the experiments, please contact Giorgio Audrito.

References

Setup

The next sections contain the setup instructions based on the CMake build system for the various supported OSs and virtual containers. Jump to the section dedicated to your system of choice and ignore the others.

Windows

Pre-requisites:

At this point, run "MSYS2 MinGW x64" from the start menu; a terminal will appear. Run the following commands:

pacman -Syu

After updating packages, the terminal will close. Open it again, and then type:

pacman -Sy --noconfirm --needed base-devel mingw-w64-x86_64-toolchain mingw-w64-x86_64-cmake mingw-w64-x86_64-make git

The build system should now be available from the "MSYS2 MinGW x64" terminal.

Linux

Pre-requisites:

  • Xorg-dev package (X11)
  • G++ 9 (or higher)
  • CMake 3.18 (or higher)
  • Asymptote (for building the plots)
  • Doxygen (for building the documentation)

To install these packages in Ubuntu, type the following command:

sudo apt-get install xorg-dev g++ cmake asymptote doxygen

In Fedora, the xorg-dev package is not available. Instead, install the packages:

libX11-devel libXinerama-devel.x86_6 libXcursor-devel.x86_64 libXi-devel.x86_64 libXrandr-devel.x86_64 mesa-libGL-devel.x86_64

MacOS

Pre-requisites:

  • Xcode Command Line Tools
  • CMake 3.18 (or higher)
  • Asymptote (for building the plots)
  • Doxygen (for building the documentation)

To install them, assuming you have the brew package manager, type the following commands:

xcode-select --install
brew install cmake asymptote doxygen

Graphical User Interface

Executing a graphical simulation will open a window displaying the simulation scenario, initially still: you can start running the simulation by pressing P (current simulated time is displayed in the bottom-left corner). While the simulation is running, network statistics may be periodically printed in the console, and be possibly aggregated in form of an Asymptote plot at simulation end. You can interact with the simulation through the following keys:

  • Esc to end the simulation
  • P to stop/resume
  • O/I to speed-up/slow-down simulated time
  • L to show/hide connection links between nodes
  • G to show/hide the grid on the reference plane and node pins
  • M enables/disables the marker for selecting nodes
  • left-click on a selected node to open a window with node details
  • C resets the camera to the starting position
  • Q,W,E,A,S,D to move the simulation area along orthogonal axes
  • right-click+mouse drag to rotate the camera
  • mouse scroll for zooming in and out
  • left-shift added to the camera commands above for precision control
  • any other key will show/hide a legenda displaying this list

Hovering on a node will also display its UID in the top-left corner.

Simulations

TODO

About

Optimised implementations of the SLCS logic in FCPP

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published