-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a4aa653
commit b08152f
Showing
2 changed files
with
202 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
"""Definition of Geometric Adstock Effect class.""" | ||
|
||
from typing import Dict | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import numpyro | ||
from numpyro import distributions as dist | ||
|
||
from prophetverse.effects.base import BaseEffect | ||
|
||
__all__ = ["GeometricAdstockEffect"] | ||
|
||
|
||
class GeometricAdstockEffect(BaseEffect): | ||
"""Represents a Geometric Adstock effect in a time series model. | ||
Parameters | ||
---------- | ||
decay_prior : Distribution, optional | ||
Prior distribution for the decay parameter (controls the rate of decay). | ||
rase_error_if_fh_changes : bool, optional | ||
Whether to raise an error if the forecasting horizon changes during predict | ||
""" | ||
|
||
_tags = { | ||
"supports_multivariate": False, | ||
"skip_predict_if_no_match": True, | ||
"filter_indexes_with_forecating_horizon_at_transform": True, | ||
} | ||
|
||
def __init__( | ||
self, | ||
decay_prior: dist.Distribution = None, | ||
raise_error_if_fh_changes: bool = True, | ||
): | ||
self.decay_prior = decay_prior or dist.Beta( | ||
2, 2 | ||
) # Default Beta distribution for decay rate. | ||
self.raise_errror_if_fh_changes = raise_error_if_fh_changes | ||
super().__init__() | ||
|
||
self._min_date = None | ||
|
||
def _transform(self, X, fh): | ||
"""Transform the dataframe and horizon to array. | ||
Parameters | ||
---------- | ||
X : pd.DataFrame | ||
dataframe with exogenous variables | ||
fh : pd.Index | ||
Forecast horizon | ||
Returns | ||
------- | ||
jnp.ndarray | ||
the array with data for _predict | ||
Raises | ||
------ | ||
ValueError | ||
If the forecasting horizon is different during predict and fit. | ||
""" | ||
if self._min_date is None: | ||
self._min_date = X.index.min() | ||
else: | ||
if self._min_date != X.index.min() and self.raise_errror_if_fh_changes: | ||
raise ValueError( | ||
"The X dataframe and forecat horizon" | ||
"must be start at the same" | ||
"date as the previous one" | ||
) | ||
return super()._transform(X, fh) | ||
|
||
def _sample_params( | ||
self, data: jnp.ndarray, predicted_effects: Dict[str, jnp.ndarray] | ||
) -> Dict[str, jnp.ndarray]: | ||
""" | ||
Sample the parameters of the effect. | ||
Parameters | ||
---------- | ||
data : jnp.ndarray | ||
Data obtained from the transformed method. | ||
predicted_effects : Dict[str, jnp.ndarray] | ||
A dictionary containing the predicted effects. | ||
Returns | ||
------- | ||
Dict[str, jnp.ndarray] | ||
A dictionary containing the sampled parameters of the effect. | ||
""" | ||
return { | ||
"decay": numpyro.sample("decay", self.decay_prior), | ||
} | ||
|
||
def _predict( | ||
self, | ||
data: jnp.ndarray, | ||
predicted_effects: Dict[str, jnp.ndarray], | ||
params: Dict[str, jnp.ndarray], | ||
) -> jnp.ndarray: | ||
""" | ||
Apply and return the geometric adstock effect values. | ||
Parameters | ||
---------- | ||
data : jnp.ndarray | ||
Data obtained from the transformed method (shape: T, 1). | ||
predicted_effects : Dict[str, jnp.ndarray] | ||
A dictionary containing the predicted effects. | ||
params : Dict[str, jnp.ndarray] | ||
A dictionary containing the sampled parameters of the effect. | ||
Returns | ||
------- | ||
jnp.ndarray | ||
An array with shape (T, 1) for univariate timeseries. | ||
""" | ||
decay = params["decay"] | ||
|
||
# Apply geometric adstock using jax.lax.scan for efficiency | ||
def adstock_step(carry, current): | ||
prev_adstock = carry | ||
new_adstock = current + decay * prev_adstock | ||
return new_adstock, new_adstock | ||
|
||
_, adstock = jax.lax.scan( | ||
adstock_step, init=jnp.array([0], dtype=data.dtype), xs=data | ||
) | ||
return adstock.reshape(-1, 1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
"""Pytest for Geometric Adstock Effect class.""" | ||
|
||
import jax.numpy as jnp | ||
import pandas as pd | ||
import pytest | ||
from numpyro import handlers | ||
from numpyro.distributions import Beta | ||
|
||
from prophetverse.effects.adstock import GeometricAdstockEffect | ||
|
||
|
||
def test_geometric_adstock_sampling(): | ||
"""Test parameter sampling using numpyro.handlers.trace.""" | ||
effect = GeometricAdstockEffect(decay_prior=Beta(2, 2)) | ||
data = jnp.ones((10, 1)) # Dummy data | ||
predicted_effects = {} | ||
|
||
with handlers.trace() as trace, handlers.seed(rng_seed=0): | ||
effect._sample_params(data, predicted_effects) | ||
|
||
# Verify trace contains decay site | ||
assert "decay" in trace, "Decay parameter not found in trace." | ||
|
||
# Verify decay is sampled from the correct prior | ||
assert trace["decay"]["type"] == "sample", "Decay parameter not sampled." | ||
assert isinstance( | ||
trace["decay"]["fn"], Beta | ||
), "Decay parameter not sampled from Beta distribution." | ||
|
||
|
||
def test_geometric_adstock_predict(): | ||
"""Test the predict method for correctness with predefined parameters.""" | ||
effect = GeometricAdstockEffect() | ||
|
||
# Define mock data and parameters | ||
data = jnp.array([[10.0], [20.0], [30.0]]) # Example input data (T, 1) | ||
params = {"decay": jnp.array(0.5)} | ||
predicted_effects = {} | ||
|
||
# Call _predict | ||
result = effect._predict(data, predicted_effects, params) | ||
|
||
# Expected adstock output | ||
expected = jnp.array( | ||
[ | ||
[10.0], | ||
[20.0 + 0.5 * 10.0], | ||
[30.0 + 0.5 * (20.0 + 0.5 * 10.0)], | ||
] | ||
) | ||
|
||
# Verify output shape | ||
assert result.shape == data.shape, "Output shape mismatch." | ||
|
||
# Verify output values | ||
assert jnp.allclose(result, expected), "Adstock computation incorrect." | ||
|
||
|
||
def test_error_when_different_fh(): | ||
effect = GeometricAdstockEffect() | ||
X = pd.DataFrame( | ||
data={"exog": [10.0, 20.0, 30.0, 30.0, 40.0, 50.0]}, | ||
index=pd.date_range("2021-01-01", periods=6), | ||
) | ||
fh = X.index | ||
effect.transform(X=X, fh=fh) | ||
|
||
effect.transform(X=X.iloc[:1], fh=fh[:1]) | ||
with pytest.raises(ValueError): | ||
effect.transform(X=X, fh=fh[1:]) |