Skip to content
forked from yunjey/stargan

PyTorch Implementation of StarGAN - CVPR 2018

License

Notifications You must be signed in to change notification settings

fengju514/StarGAN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


This repository provides a PyTorch implementation of StarGAN. StarGAN can flexibly translate an input image to any desired target domain using only a single generator and a discriminator. The demo video for StarGAN can be found here.


Paper

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Yunjey Choi 1,2, Minje Choi 1,2, Munyoung Kim 2,3, Jung-Woo Ha 2, Sung Kim 2,4, and Jaegul Choo 1,2    
1 Korea University, 2 Clova AI Research (NAVER Corp.), 3 The College of New Jersey, 4 HKUST
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (Oral)


Dependencies


Usage

1. Cloning the repository

$ git clone https://github.com/yunjey/StarGAN.git
$ cd StarGAN/

2. Downloading the dataset

To download the CelebA dataset:

$ bash download.sh celeba

To download the RaFD dataset, you must request access to the dataset from the Radboud Faces Database website. Then, you need to create a folder structure as described here.

3. Training

To train StarGAN on CelebA, run the training script below. See here for a list of selectable attributes in the CelebA dataset. If you change the selected_attrs argument, you should also change the c_dim argument accordingly.

$ python main.py --mode train --dataset CelebA --image_size 128 --c_dim 5 \
                 --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
                 --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
                 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

To train StarGAN on RaFD:

$ python main.py --mode train --dataset RaFD --image_size 128 --c_dim 8 \
                 --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
                 --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

To train StarGAN on both CelebA and RafD:

$ python main.py --mode=train --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
                 --sample_dir stargan_both/samples --log_dir stargan_both/logs \
                 --model_save_dir stargan_both/models --result_dir stargan_both/results

To train StarGAN on your own dataset, create a folder structure in the same format as RaFD and run the command:

$ python main.py --mode train --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
                 --c_dim LABEL_DIM --rafd_image_dir TRAIN_IMG_DIR \
                 --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
                 --model_save_dir stargan_custom/models --result_dir stargan_custom/results

4. Testing

To test StarGAN on CelebA:

$ python main.py --mode test --dataset CelebA --image_size 128 --c_dim 5 \
                 --sample_dir stargan_celeba/samples --log_dir stargan_celeba/logs \
                 --model_save_dir stargan_celeba/models --result_dir stargan_celeba/results \
                 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young

To test StarGAN on RaFD:

$ python main.py --mode test --dataset RaFD --image_size 128 \
                 --c_dim 8 --rafd_image_dir data/RaFD/test \
                 --sample_dir stargan_rafd/samples --log_dir stargan_rafd/logs \
                 --model_save_dir stargan_rafd/models --result_dir stargan_rafd/results

To test StarGAN on both CelebA and RaFD:

$ python main.py --mode test --dataset Both --image_size 256 --c_dim 5 --c2_dim 8 \
                 --sample_dir stargan_both/samples --log_dir stargan_both/logs \
                 --model_save_dir stargan_both/models --result_dir stargan_both/results

To test StarGAN on your own dataset:

$ python main.py --mode test --dataset RaFD --rafd_crop_size CROP_SIZE --image_size IMG_SIZE \
                 --c_dim LABEL_DIM --rafd_image_dir TEST_IMG_DIR \
                 --sample_dir stargan_custom/samples --log_dir stargan_custom/logs \
                 --model_save_dir stargan_custom/models --result_dir stargan_custom/results

5. Pretrained model

To download a pretrained model checkpoint, run the script below. The pretrained model checkpoint will be downloaded and saved into ./stargan_celeba_256/models directory.

$ bash download.sh pretrained-celeba-256x256

To translate images using the pretrained model, run the evaluation script below. The translated images will be saved into ./stargan_celeba_256/results directory.

$ python main.py --mode test --dataset CelebA --image_size 256 --c_dim 5 \
                 --selected_attrs Black_Hair Blond_Hair Brown_Hair Male Young \
                 --model_save_dir='stargan_celeba_256/models' \
                 --result_dir='stargan_celeba_256/results'

Results

1. Facial Attribute Transfer on CelebA

2. Facial Expression Synthesis on RaFD

3. Facial Expression Synthesis on CelebA


Citation

If this work is useful for your research, please cite our paper:

@InProceedings{StarGAN2018,
author = {Choi, Yunjey and Choi, Minje and Kim, Munyoung and Ha, Jung-Woo and Kim, Sunghun and Choo, Jaegul},
title = {StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Acknowledgement

This work was mainly done while the first author did a research internship at Clova AI Research, NAVER. We thank all the researchers at NAVER, especially Donghyun Kwak, for insightful discussions.

About

PyTorch Implementation of StarGAN - CVPR 2018

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.4%
  • Shell 3.6%