-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
158 additions
and
23 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import jax | ||
from pyscfad import gto, scf, fci | ||
|
||
# molecular structure | ||
mol = gto.Mole() | ||
mol.atom = 'H 0 0 0; H 0 0 1.1' | ||
mol.basis = 'ccpvdz' | ||
mol.build() | ||
|
||
# HF and FCI calculation | ||
nroots = 8 | ||
mf = scf.RHF(mol) | ||
mf.kernel() | ||
e, fcivec = fci.solve_fci(mf, nroots=nroots) | ||
print(e) | ||
|
||
nelec = mol.nelectron | ||
norb = mf.mo_coeff.shape[-1] | ||
stateI, stateJ = 2, 7 | ||
def ovlp(mol1): | ||
mf1 = scf.RHF(mol1) | ||
mf1.kernel() | ||
e1, fcivec1 = fci.solve_fci(mf1, nroots=nroots) | ||
# wavefunction overlap | ||
s = fci.fci_ovlp(mol, mol1, fcivec[stateI], fcivec1[stateJ], | ||
norb, norb, nelec, nelec, mf.mo_coeff, mf1.mo_coeff) | ||
return s | ||
|
||
# Only the ket state is differentiated | ||
mol1 = mol.copy() | ||
jac = jax.jacrev(ovlp)(mol1) | ||
print("FCI derivative coupling:") | ||
print(jac.coords) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import numpy | ||
import jax | ||
from jax import numpy as np | ||
from pyscf.data.nist import BOHR, HARTREE2EV | ||
from pyscfad.pbc import gto as pbcgto | ||
from pyscfad.pbc import scf as pbcscf | ||
|
||
aas = numpy.arange(5,6.0,0.1,dtype=float) | ||
for aa in aas: | ||
basis = 'gth-szv' | ||
pseudo = 'gth-pade' | ||
lattice = numpy.asarray([[0., aa/2, aa/2], | ||
[aa/2, 0., aa/2], | ||
[aa/2, aa/2, 0.]]) | ||
atom = [['Si', [0., 0., 0.]], | ||
['Si', [aa/4, aa/4, aa/4]]] | ||
|
||
cell0 = pbcgto.Cell() | ||
cell0.atom = atom | ||
cell0.a = lattice | ||
cell0.basis = basis | ||
cell0.pseudo = pseudo | ||
cell0.verbose = 4 | ||
cell0.exp_to_discard=0.1 | ||
cell0.build() | ||
|
||
coords = [] | ||
for i, a in enumerate(atom): | ||
coords.append(a[1]) | ||
coords = numpy.asarray(coords) | ||
|
||
strain = numpy.zeros((3,3)) | ||
def khf_energy(strain, lattice, coords): | ||
cell = pbcgto.Cell() | ||
cell.atom = atom | ||
cell.a = lattice | ||
cell.basis = basis | ||
cell.pseudo = pseudo | ||
cell.verbose = 4 | ||
cell.exp_to_discard=0.1 | ||
cell.max_memory=40000 | ||
cell.build(trace_lattice_vectors=True) | ||
|
||
cell.abc += np.einsum('ab,nb->na', strain, cell.lattice_vectors()) | ||
cell.coords += np.einsum('xy,ny->nx', strain, cell.atom_coords()) | ||
|
||
kpts = cell.make_kpts([2,2,2]) | ||
|
||
mf = pbcscf.KRHF(cell, kpts=kpts, exxdiv=None) | ||
ehf = mf.kernel(dm0=None) | ||
return ehf | ||
|
||
jac = jax.jacrev(khf_energy)(strain, lattice, coords) | ||
print('stress tensor') | ||
print('----------------------------') | ||
print(jac) | ||
print(jac / cell0.vol) | ||
print(jac*HARTREE2EV / (cell0.vol*(BOHR**3))) | ||
print('----------------------------') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,34 +1,43 @@ | ||
import numpy | ||
import jax | ||
from jax import numpy as jnp | ||
from pyscfad import gto, scf, tdscf | ||
from pyscfad import gto, scf | ||
from pyscfad.tdscf.rhf import CIS, cis_ovlp | ||
|
||
# molecular structure | ||
mol = gto.Mole() | ||
mol.atom = 'H 0 0 0; H 0 0 1.1' | ||
mol.basis = 'ccpvtz' | ||
mol.verbose = 4 | ||
mol.build(trace_exp=False, trace_ctr_coeff=False) | ||
mol.basis = 'cc-pvdz' | ||
mol.build() | ||
|
||
# HF and CIS calculations | ||
mf = scf.RHF(mol) | ||
mf.kernel() | ||
mytd = tdscf.rhf.CIS(mf) | ||
mytd.nstates = 3 | ||
mytd = CIS(mf) | ||
mytd.nstates = 8 | ||
e, xy = mytd.kernel() | ||
|
||
i, j = 0, 2 | ||
xi = xy[i][0] * jnp.sqrt(2.) | ||
xj = xy[j][0] * jnp.sqrt(2.) | ||
# Target excited states I and J (1st and 4th) | ||
stateI, stateJ = 0, 2 | ||
# CI coefficients of state I | ||
xi = xy[stateI][0] * numpy.sqrt(2.) | ||
nmo = mf.mo_coeff.shape[-1] | ||
nocc = mol.nelectron // 2 | ||
|
||
# Using Hellman-Feynman formalism. | ||
# The amplitude is closed over, so there is no tracing through the Davidson iteration. | ||
def hellman(mol): | ||
mf = scf.RHF(mol) | ||
mf.kernel() | ||
mytd = tdscf.rhf.CIS(mf) | ||
mytd.nstates = 3 | ||
def ovlp(mol1): | ||
mf1 = scf.RHF(mol1) | ||
mf1.kernel() | ||
mytd1 = CIS(mf1) | ||
mytd1.nstates = 8 | ||
_, xy1 = mytd1.kernel() | ||
# CI coefficients of state J | ||
xj = xy1[stateJ][0] * numpy.sqrt(2.) | ||
# CIS wavefunction overlap | ||
s = cis_ovlp(mol, mol1, mf.mo_coeff, mf1.mo_coeff, | ||
nocc, nocc, nmo, nmo, xi, xj) | ||
return s | ||
|
||
vind, _ = mytd.gen_vind(mytd._scf) | ||
e = jnp.dot(xi.ravel(), vind(xj).ravel()) | ||
return e | ||
|
||
nac = jax.grad(hellman)(mol) | ||
print(nac.coords / (e[j]-e[i])) | ||
# Only the ket state is differentiated | ||
mol1 = mol.copy() | ||
jac = jax.jacrev(ovlp)(mol1) | ||
print("CIS derivative coupling:") | ||
print(jac.coords) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
import jax | ||
from jax import numpy as jnp | ||
from pyscfad import gto, scf, tdscf | ||
|
||
mol = gto.Mole() | ||
mol.atom = 'H 0 0 0; H 0 0 1.1' | ||
mol.basis = 'ccpvtz' | ||
mol.verbose = 4 | ||
mol.build(trace_exp=False, trace_ctr_coeff=False) | ||
|
||
mf = scf.RHF(mol) | ||
mf.kernel() | ||
mytd = tdscf.rhf.CIS(mf) | ||
mytd.nstates = 3 | ||
e, xy = mytd.kernel() | ||
|
||
i, j = 0, 2 | ||
xi = xy[i][0] * jnp.sqrt(2.) | ||
xj = xy[j][0] * jnp.sqrt(2.) | ||
|
||
# Using Hellman-Feynman formalism. | ||
# The amplitude is closed over, so there is no tracing through the Davidson iteration. | ||
def hellman(mol): | ||
mf = scf.RHF(mol) | ||
mf.kernel() | ||
mytd = tdscf.rhf.CIS(mf) | ||
mytd.nstates = 3 | ||
|
||
vind, _ = mytd.gen_vind(mytd._scf) | ||
e = jnp.dot(xi.ravel(), vind(xj).ravel()) | ||
return e | ||
|
||
nac = jax.grad(hellman)(mol) | ||
print(nac.coords / (e[j]-e[i])) |