-
Notifications
You must be signed in to change notification settings - Fork 245
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Generic Toom-3 multiplication for gr_poly #2071
Merged
Merged
Changes from 2 commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
32e154e
generic Toom-3 multiplication for gr_poly
fredrik-johansson eaceff2
credit Bodrato for original pseudocode
fredrik-johansson 83a1703
reduce Toom zero-padding
fredrik-johansson 6724256
clarify that exact division by 2 and 3 is required
fredrik-johansson File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
/* | ||
Copyright (C) 2007 Marco Bodrato | ||
Copyright (C) 2024 Fredrik Johansson | ||
|
||
This file is part of FLINT. | ||
|
||
FLINT is free software: you can redistribute it and/or modify it under | ||
the terms of the GNU Lesser General Public License (LGPL) as published | ||
by the Free Software Foundation; either version 3 of the License, or | ||
(at your option) any later version. See <https://www.gnu.org/licenses/>. | ||
*/ | ||
|
||
#include "gr_vec.h" | ||
#include "gr_poly.h" | ||
|
||
/* | ||
Toom33 (interpolation in 5 points) using Bodrato scheme | ||
http://marco.bodrato.it/papers/Bodrato2007-OptimalToomCookMultiplicationForBinaryFieldAndIntegers.pdf | ||
|
||
Assumes commutativity, division by 3. | ||
Todo: squaring version. | ||
Todo: skip unnecessary zero-extensions of vectors and tighten | ||
allocations. | ||
*/ | ||
int | ||
_gr_poly_mul_toom33(gr_ptr res, gr_srcptr f, slong flen, gr_srcptr g, slong glen, gr_ctx_t ctx) | ||
{ | ||
gr_srcptr U0, U1, U2, V0, V1, V2; | ||
gr_ptr tmp, W0, W1, W2, W3, W4; | ||
slong m, U2len, V2len, U1len, V1len, U0len, V0len, rlen, len; | ||
slong sz = ctx->sizeof_elem; | ||
slong alloc; | ||
int status = GR_SUCCESS; | ||
|
||
/* TODO: should explicitly call basecase mul. */ | ||
if (flen <= 1 || glen <= 1) | ||
return _gr_poly_mullow_generic(res, f, flen, g, glen, flen + glen - 1, ctx); | ||
|
||
/* U = U2*x^(2m) + U1*x^m + U0 */ | ||
/* V = V2*x^(2m) + V1*x^m + V0 */ | ||
/* Each block has length m */ | ||
m = FLINT_MAX(flen, glen); | ||
m = (m + 3 - 1) / 3; | ||
U0 = f; | ||
U1 = GR_ENTRY(f, m, sz); | ||
U2 = GR_ENTRY(f, 2 * m, sz); | ||
V0 = g; | ||
V1 = GR_ENTRY(g, m, sz); | ||
V2 = GR_ENTRY(g, 2 * m, sz); | ||
|
||
U2len = FLINT_MAX(flen - 2 * m, 0); | ||
V2len = FLINT_MAX(glen - 2 * m, 0); | ||
U1len = FLINT_MIN(FLINT_MAX(flen - m, 0), m); | ||
V1len = FLINT_MIN(FLINT_MAX(glen - m, 0), m); | ||
U0len = FLINT_MIN(flen, m); | ||
V0len = FLINT_MIN(glen, m); | ||
|
||
alloc = 10 * m; | ||
GR_TMP_INIT_VEC(tmp, alloc, ctx); | ||
W0 = tmp; | ||
W1 = GR_ENTRY(W0, 2 * m, sz); | ||
W2 = GR_ENTRY(W1, 2 * m, sz); | ||
W3 = GR_ENTRY(W2, 2 * m, sz); | ||
W4 = GR_ENTRY(W3, 2 * m, sz); | ||
|
||
/* Evaluation: 5*2 add, 2 shift; 5mul */ | ||
/* W0 = U2 + U0 */ | ||
/* if max(U2len,U0len) < m, assumes top coefficients are already zeroed from the initialization */ | ||
status |= _gr_poly_add(W0, U2, U2len, U0, U0len, ctx); | ||
/* W4 = V2 + V0 */ | ||
/* if max(V2len,V0len) < m, assumes top coefficients are already zeroed from the initialization */ | ||
status |= _gr_poly_add(W4, V2, V2len, V0, V0len, ctx); | ||
/* W2 = W0 - U1 */ | ||
status |= _gr_poly_sub(W2, W0, m, U1, U1len, ctx); | ||
/* W1 = W4 - V1 */ | ||
status |= _gr_poly_sub(W1, W4, m, V1, V1len, ctx); | ||
/* W0 = W0 + U1 */ | ||
status |= _gr_poly_add(W0, W0, m, U1, U1len, ctx); | ||
/* W4 = W4 + V1 */ | ||
status |= _gr_poly_add(W4, W4, m, V1, V1len, ctx); | ||
/* W3 = W2 * W1 */ | ||
status |= _gr_poly_mul(W3, W2, m, W1, m, ctx); | ||
/* W1 = W0 * W4 */ | ||
status |= _gr_poly_mul(W1, W0, m, W4, m, ctx); | ||
/* W0 = ((W0 + U2) << 1) - U0 */ | ||
status |= _gr_poly_add(W0, W0, m, U2, U2len, ctx); | ||
status |= _gr_vec_mul_scalar_2exp_si(W0, W0, m, 1, ctx); | ||
status |= _gr_poly_sub(W0, W0, m, U0, U0len, ctx); | ||
/* W4 = ((W4 + V2) << 1) - V0 */ | ||
status |= _gr_poly_add(W4, W4, m, V2, V2len, ctx); | ||
status |= _gr_vec_mul_scalar_2exp_si(W4, W4, m, 1, ctx); | ||
status |= _gr_poly_sub(W4, W4, m, V0, V0len, ctx); | ||
/* W2 = W0 * W4 */ | ||
status |= _gr_poly_mul(W2, W0, m, W4, m, ctx); | ||
/* W0 = U0 * V0 */ | ||
if (U0len > 0 && V0len > 0) | ||
{ | ||
status |= _gr_poly_mul(W0, U0, U0len, V0, V0len, ctx); | ||
status |= _gr_vec_zero(GR_ENTRY(W0, U0len + V0len - 1, sz), 2 * m - (U0len + V0len - 1), ctx); | ||
} | ||
else | ||
status |= _gr_vec_zero(W0, 2 * m, ctx); | ||
/* W4 = U2 * V2 */ | ||
if (U2len > 0 && V2len > 0) | ||
{ | ||
status |= _gr_poly_mul(W4, U2, U2len, V2, V2len, ctx); | ||
status |= _gr_vec_zero(GR_ENTRY(W4, U2len + V2len - 1, sz), 2 * m - (U2len + V2len - 1), ctx); | ||
} | ||
else | ||
status |= _gr_vec_zero(W4, 2 * m, ctx); | ||
|
||
|
||
/* toom42 variant */ | ||
/* U = U3*x^(3m) + U2*x^(2m) + U1*x^m + U0 */ | ||
/* V = V1*x^m + V0 */ | ||
/* Evaluation: 7+3 add, 3 shift; 5mul */ | ||
/* | ||
W0 = U1 + U3; | ||
W4 = U0 + U2; | ||
W3 = W4 + W0; | ||
W4 = W4 - W0; | ||
W0 = V0 + V1; | ||
W2 = V0 - V1; | ||
W1 = W3 * W0; | ||
W3 = W4 * W2; | ||
W4 = (((((U3<<1) + U2) << 1) + U1) << 1) + U0; | ||
W0 = W0 + V1; | ||
W2 = W4 * W0; | ||
W0 = U0 * V0; | ||
W4 = U3 * V1; | ||
*/ | ||
|
||
/* Interpolation: 8 add, 3 shift, 1 Sdiv */ | ||
len = 2 * m - 1; | ||
/* W2 = (W2 - W3) / 3 */ | ||
status |= _gr_vec_sub(W2, W2, W3, len, ctx); | ||
status |= _gr_vec_divexact_scalar_ui(W2, W2, len, 3, ctx); | ||
/* W3 = (W1 - W3) >> 1 */ | ||
status |= _gr_vec_sub(W3, W1, W3, len, ctx); | ||
status |= _gr_vec_mul_scalar_2exp_si(W3, W3, len, -1, ctx); | ||
/* W1 = W1 - W0 */ | ||
status |= _gr_vec_sub(W1, W1, W0, len, ctx); | ||
/* W2 = ((W2 - W1) >> 1) - (W4 << 1) */ | ||
status |= _gr_vec_sub(W2, W2, W1, len, ctx); | ||
status |= _gr_vec_mul_scalar_2exp_si(W2, W2, len, -1, ctx); | ||
status |= _gr_vec_mul_scalar_2exp_si(res, W4, len, 1, ctx); | ||
status |= _gr_vec_sub(W2, W2, res, len, ctx); | ||
/* W1 = W1 - W3 - W4 */ | ||
status |= _gr_vec_sub(W1, W1, W3, len, ctx); | ||
status |= _gr_vec_sub(W1, W1, W4, len, ctx); | ||
/* W3 = W3 - W2 */ | ||
status |= _gr_vec_sub(W3, W3, W2, len, ctx); | ||
|
||
/* Recomposition: */ | ||
/* W = W4 * x^(4m) + W2*x^(3m) + W1*x^(2m) + W3*x^m + W0 */ | ||
|
||
rlen = flen + glen - 1; | ||
len = FLINT_MIN(rlen, m); | ||
status |= _gr_vec_set(res, W0, FLINT_MIN(rlen, m), ctx); | ||
len = FLINT_MIN(rlen - m, m); | ||
status |= _gr_vec_add(GR_ENTRY(res, m, sz), W3, GR_ENTRY(W0, m, sz), len, ctx); | ||
len = FLINT_MIN(rlen - 2 * m, m); | ||
status |= _gr_vec_add(GR_ENTRY(res, 2 * m, sz), W1, GR_ENTRY(W3, m, sz), len, ctx); | ||
len = FLINT_MIN(rlen - 3 * m, m); | ||
status |= _gr_vec_add(GR_ENTRY(res, 3 * m, sz), W2, GR_ENTRY(W1, m, sz), len, ctx); | ||
len = FLINT_MIN(rlen - 4 * m, m); | ||
status |= _gr_vec_add(GR_ENTRY(res, 4 * m, sz), W4, GR_ENTRY(W2, m, sz), len, ctx); | ||
len = FLINT_MIN(rlen - 5 * m, m); | ||
status |= _gr_vec_set(GR_ENTRY(res, 5 * m, sz), GR_ENTRY(W4, m, sz), len, ctx); | ||
|
||
GR_TMP_CLEAR_VEC(tmp, alloc, ctx); | ||
|
||
return status; | ||
} | ||
|
||
int | ||
gr_poly_mul_toom33(gr_poly_t res, const gr_poly_t poly1, const gr_poly_t poly2, gr_ctx_t ctx) | ||
{ | ||
slong len_out; | ||
int status; | ||
|
||
if (poly1->length == 0 || poly2->length == 0) | ||
return gr_poly_zero(res, ctx); | ||
|
||
len_out = poly1->length + poly2->length - 1; | ||
|
||
if (res == poly1 || res == poly2) | ||
{ | ||
gr_poly_t t; | ||
gr_poly_init2(t, len_out, ctx); | ||
status = _gr_poly_mul_toom33(t->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, ctx); | ||
gr_poly_swap(res, t, ctx); | ||
gr_poly_clear(t, ctx); | ||
} | ||
else | ||
{ | ||
gr_poly_fit_length(res, len_out, ctx); | ||
status = _gr_poly_mul_toom33(res->coeffs, poly1->coeffs, poly1->length, poly2->coeffs, poly2->length, ctx); | ||
} | ||
|
||
_gr_poly_set_length(res, len_out, ctx); | ||
_gr_poly_normalise(res, ctx); | ||
return status; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
/* | ||
Copyright (C) 2023 Fredrik Johansson | ||
|
||
This file is part of FLINT. | ||
|
||
FLINT is free software: you can redistribute it and/or modify it under | ||
the terms of the GNU Lesser General Public License (LGPL) as published | ||
by the Free Software Foundation; either version 3 of the License, or | ||
(at your option) any later version. See <https://www.gnu.org/licenses/>. | ||
*/ | ||
|
||
#include "test_helpers.h" | ||
#include "ulong_extras.h" | ||
#include "gr_poly.h" | ||
|
||
FLINT_DLL extern gr_static_method_table _ca_methods; | ||
|
||
int | ||
test_mul1(flint_rand_t state, int which) | ||
{ | ||
gr_ctx_t ctx; | ||
slong n; | ||
gr_poly_t A, B, C, D; | ||
int status = GR_SUCCESS; | ||
|
||
gr_ctx_init_random(ctx, state); | ||
|
||
gr_poly_init(A, ctx); | ||
gr_poly_init(B, ctx); | ||
gr_poly_init(C, ctx); | ||
gr_poly_init(D, ctx); | ||
|
||
if (ctx->methods == _ca_methods) | ||
n = 2; | ||
else if (gr_ctx_is_finite(ctx) == T_TRUE) | ||
n = 30; | ||
else | ||
n = 10; | ||
|
||
GR_MUST_SUCCEED(gr_poly_randtest(A, state, 1 + n_randint(state, n), ctx)); | ||
GR_MUST_SUCCEED(gr_poly_randtest(B, state, 1 + n_randint(state, n), ctx)); | ||
GR_MUST_SUCCEED(gr_poly_randtest(C, state, 1 + n_randint(state, n), ctx)); | ||
|
||
switch (which) | ||
{ | ||
case 0: | ||
status |= gr_poly_mul_toom33(C, A, B, ctx); | ||
break; | ||
case 1: | ||
status |= gr_poly_set(C, A, ctx); | ||
status |= gr_poly_mul_toom33(C, C, B, ctx); | ||
break; | ||
case 2: | ||
status |= gr_poly_set(C, B, ctx); | ||
status |= gr_poly_mul_toom33(C, A, C, ctx); | ||
break; | ||
case 3: | ||
status |= gr_poly_set(B, A, ctx); | ||
status |= gr_poly_mul_toom33(C, A, A, ctx); | ||
break; | ||
case 4: | ||
status |= gr_poly_set(B, A, ctx); | ||
status |= gr_poly_set(C, A, ctx); | ||
status |= gr_poly_mul_toom33(C, C, C, ctx); | ||
break; | ||
|
||
default: | ||
flint_abort(); | ||
} | ||
|
||
/* todo: should explicitly call basecase mul */ | ||
status |= gr_poly_mullow(D, A, B, FLINT_MAX(0, A->length + B->length - 1), ctx); | ||
|
||
if (status == GR_SUCCESS && gr_poly_equal(C, D, ctx) == T_FALSE) | ||
{ | ||
flint_printf("FAIL\n\n"); | ||
flint_printf("which = %d, n = %wd\n\n", which, n); | ||
gr_ctx_println(ctx); | ||
flint_printf("A = "); gr_poly_print(A, ctx); flint_printf("\n\n"); | ||
flint_printf("B = "); gr_poly_print(B, ctx); flint_printf("\n\n"); | ||
flint_printf("C = "); gr_poly_print(C, ctx); flint_printf("\n\n"); | ||
flint_printf("D = "); gr_poly_print(D, ctx); flint_printf("\n\n"); | ||
flint_abort(); | ||
} | ||
|
||
gr_poly_clear(A, ctx); | ||
gr_poly_clear(B, ctx); | ||
gr_poly_clear(C, ctx); | ||
gr_poly_clear(D, ctx); | ||
|
||
gr_ctx_clear(ctx); | ||
|
||
return status; | ||
} | ||
|
||
TEST_FUNCTION_START(gr_poly_mul_toom33, state) | ||
{ | ||
slong iter; | ||
|
||
for (iter = 0; iter < 1000; iter++) | ||
{ | ||
test_mul1(state, n_randint(state, 5)); | ||
} | ||
|
||
TEST_FUNCTION_END(state); | ||
} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
What is meant by "division by 3"?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We require that the ring supports exact division by 3, i.e. (3x)/3 = x; in other words the characteristic should be 0 or not divisible by 3.
Actually, division by 2 is required too; I should update this comment.