Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move intro docs from flytesnacks to flyte #4814

Merged
merged 7 commits into from
Feb 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@


autosummary_generate = True
suppress_warnings = ["autosectionlabel.*"]
suppress_warnings = ["autosectionlabel.*", "myst.header"]
autodoc_typehints = "description"

# The master toctree document.
Expand Down Expand Up @@ -294,6 +294,9 @@
"flytesnacks/**/*",
"examples/**/*",
]
nb_custom_formats = {
".md": ["jupytext.reads", {"fmt": "md:myst"}],
}

# Pattern for removing intersphinx references from source files.
# This should handle cases like:
Expand Down Expand Up @@ -365,6 +368,7 @@
"flytesnacks/auto_examples",
"flytesnacks/_build",
"flytesnacks/_tags",
"flytesnacks/getting_started",
]
],
"local": flytesnacks_local_path is not None,
Expand Down Expand Up @@ -446,6 +450,7 @@ def filter(self, record: logging.LogRecord) -> bool:
"Definition list ends without a blank line",
"autodoc: failed to import module 'awssagemaker' from module 'flytekitplugins'",
"Enumerated list ends without a blank line",
'Unknown directive type "toc".', # need to fix flytesnacks/contribute.md
)

if msg.strip().startswith(filter_out):
Expand Down
12 changes: 6 additions & 6 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ contribute its architecture and design. You can also access the
:header-rows: 0
:widths: 20 30

* - {doc}`🔤 Intro to Flyte <introduction>`
* - {doc}`🔤 Introduction to Flyte <introduction/index>`
- Get your first workflow running, learn about the Flyte development lifecycle
and core use cases.
* - {doc}`📖 User Guide <flytesnacks/userguide>`
Expand Down Expand Up @@ -134,11 +134,11 @@ Have questions or need support? The best way to reach us is through Slack:
:maxdepth: 1
:hidden:

Introduction <introduction>
Quickstart guide <flytesnacks/getting_started/quickstart_guide>
Getting started with workflow development <flytesnacks/getting_started/getting_started_with_workflow_development>
Flyte Fundamentals <flytesnacks/getting_started/flyte_fundamentals>
Core Use Cases <flytesnacks/getting_started/core_use_cases>
Introduction <introduction/index>
Quickstart guide <introduction/quickstart_guide>
Getting started with workflow development <introduction/getting_started_with_workflow_development/index>
Flyte Fundamentals <introduction/flyte_fundamentals/index>
Core Use Cases <introduction/core_use_cases/index>
```

```{toctree}
Expand Down
179 changes: 179 additions & 0 deletions docs/introduction/core_use_cases/analytics.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
---
ppiegaze marked this conversation as resolved.
Show resolved Hide resolved
kernelspec:
display_name: Python 3
language: python
name: python3
---

(getting_started_analytics)=

# Analytics

Flyte is ideal for data cleaning, statistical summarization, and plotting
because with `flytekit` you can leverage the rich Python ecosystem of data
processing and visualization tools.

## Cleaning Data

In this example, we are going to analyze some covid vaccination data:

```{code-cell} ipython3
import pandas as pd
import plotly
import plotly.graph_objects as go
from flytekit import Deck, task, workflow, Resources


@task(requests=Resources(mem="1Gi"))
def clean_data() -> pd.DataFrame:
"""Clean the dataset."""
df = pd.read_csv("https://covid.ourworldindata.org/data/owid-covid-data.csv")
filled_df = (
df.sort_values(["people_vaccinated"], ascending=False)
.groupby("location")
.first()
.reset_index()
)[["location", "people_vaccinated", "population", "date"]]
return filled_df
```

As you can see, we're using `pandas` for data processing, and in the task
below we use `plotly` to create a choropleth map of the percent of a country's
population that has received at least one COVID-19 vaccination.

## Rendering Plots

We can use {ref}`Flyte Decks <decks>` for rendering a static HTML report
of the map. In this case, we normalize the `people_vaccinated` by the
`population` count of each country:

```{code-cell} ipython3
@task(disable_deck=False)
def plot(df: pd.DataFrame):
"""Render a Choropleth map."""
df["text"] = df["location"] + "<br>" + "Last updated on: " + df["date"]
fig = go.Figure(
data=go.Choropleth(
locations=df["location"],
z=df["people_vaccinated"].astype(float) / df["population"].astype(float),
text=df["text"],
locationmode="country names",
colorscale="Blues",
autocolorscale=False,
reversescale=False,
marker_line_color="darkgray",
marker_line_width=0.5,
zmax=1,
zmin=0,
)
)

fig.update_layout(
title_text=(
"Percent population with at least one dose of COVID-19 vaccine"
),
geo_scope="world",
geo=dict(
showframe=False, showcoastlines=False, projection_type="equirectangular"
),
)
Deck("Choropleth Map", plotly.io.to_html(fig))


@workflow
def analytics_workflow():
"""Prepare a data analytics workflow."""
plot(df=clean_data())
```

Running this workflow, we get an interactive plot, courtesy of `plotly`:

```{code-cell} ipython3
---
tags: [remove-input]
---

# this is an unrendered cell, used to capture the logs in order to render the
# Flyte Decks directly in the docs.
import logging
import os
import re
from pythonjsonlogger import jsonlogger
from IPython.display import HTML


class DeckFilter(logging.Filter):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.formatter = jsonlogger.JsonFormatter(
fmt="%(asctime)s %(name)s %(levelname)s %(message)s"
)
self.logs = []
self.deck_files = {}

def filter(self, record):
patt = "(.+) task creates flyte deck html to (.+/deck.html)"
msg = record.getMessage()
matches = re.match(patt, msg)

if msg == "Connection error. Skip stats collection.":
return False

if matches:
task, filepath = matches.group(1), matches.group(2)
self.logs.append(self.formatter.format(record))
self.deck_files[task] = re.sub("^file://", "", filepath)
return False


logger = logging.getLogger("flytekit")
logger.setLevel(20)

deck_filter = DeckFilter()
logger.addFilter(deck_filter)
```

```{code-cell} ipython3
analytics_workflow()
```

```{code-cell} ipython3
---
tags: [remove-input]
---

import os
import shutil
from pathlib import Path

def cp_deck(src):
src = Path(src)
target = Path.cwd() / "_flyte_decks" / src.parent.name
target.mkdir(parents=True, exist_ok=True)
shutil.copy(src, target)
return target / "deck.html"

logger.removeFilter(deck_filter)
HTML(filename=cp_deck(deck_filter.deck_files["plot"]))
```

## Custom Flyte Deck Renderers

You can also create your own {ref}`custom Flyte Deck renderers <getting_started_customer_renderers>`
to visualize data with any plotting/visualization library of your choice, as
long as you can render HTML for the objects of interest.

```{important}
Prefer other data processing frameworks? Flyte ships with
[Polars](https://github.com/flyteorg/flytekit/tree/master/plugins/flytekit-polars),
{ref}`Dask <plugins-dask-k8s>`, {ref}`Modin <modin-integration>`, {ref}`Spark <plugins-spark-k8s>`,
[Vaex](https://github.com/flyteorg/flytekit/tree/master/plugins/flytekit-vaex),
and [DBT](https://github.com/flyteorg/flytekit/tree/master/plugins/flytekit-dbt)
integrations.

If you need to connect to a database, Flyte provides first-party
support for {ref}`AWS Athena <aws-athena>`, {ref}`Google Bigquery <big-query>`,
{ref}`Snowflake <plugins-snowflake>`, {ref}`SQLAlchemy <sql_alchemy>`, and
{ref}`SQLite3 <integrations_sql_sqlite3>`.
```
Loading
Loading