Skip to content

Commit

Permalink
Merge branch 'fortran-lang:master' into activations
Browse files Browse the repository at this point in the history
  • Loading branch information
jalvesz authored Jan 5, 2025
2 parents 8dc0654 + b5b86a7 commit cdde132
Show file tree
Hide file tree
Showing 7 changed files with 480 additions and 73 deletions.
51 changes: 38 additions & 13 deletions doc/specs/stdlib_linalg.md
Original file line number Diff line number Diff line change
Expand Up @@ -1091,20 +1091,30 @@ Stable

### Description

This subroutine computes the solution to the eigenproblem \( A \cdot \bar{v} - \lambda \cdot \bar{v} \), where \( A \) is a square, full-rank, `real` or `complex` matrix.
This subroutine computes the solution to the eigenproblem \( A \cdot \bar{v} - \lambda \cdot \bar{v} \),
where \( A \) is a square, full-rank, `real` or `complex` matrix, or to the generalized eigenproblem \( A \cdot \bar{v} - \lambda \cdot B \cdot \bar{v} \),
where \( B \) is a square matrix with the same type, kind and size as \( A \).

Result array `lambda` returns the eigenvalues of \( A \). The user can request eigenvectors to be returned: if provided, on output `left` will contain the left eigenvectors, `right` the right eigenvectors of \( A \).
Both `left` and `right` are rank-2 arrays, where eigenvectors are stored as columns.
The solver is based on LAPACK's `*GEEV` backends.
The solver is based on LAPACK's `*GEEV` (standard eigenproblem) and `*GGEV` (generalized eigenproblem) backends.

### Syntax

For the standard eigenproblem:

`call ` [[stdlib_linalg(module):eig(interface)]] `(a, lambda [, right] [,left] [,overwrite_a] [,err])`

For the generalized eigenproblem:

`call ` [[stdlib_linalg(module):eig(interface)]] `(a, b, lambda [, right] [, left] [, overwrite_a] [, overwrite_b] [, err])

### Arguments

`a` : `real` or `complex` square array containing the coefficient matrix. If `overwrite_a=.false.`, it is an `intent(in)` argument. Otherwise, it is an `intent(inout)` argument and is destroyed by the call.

`b`: `real` or `complex` square array containing the second coefficient matrix. If `overwrite_b=.false.`, it is an `intent(in)` argument. Otherwise, it is an `intent(inout)` argument and is destroyed by the call.

`lambda`: Shall be a `complex` or `real` rank-1 array of the same kind as `a`, containing the eigenvalues, or their `real` component only. It is an `intent(out)` argument.

`right` (optional): Shall be a `complex` rank-2 array of the same size and kind as `a`, containing the right eigenvectors of `a`. It is an `intent(out)` argument.
Expand All @@ -1113,6 +1123,8 @@ The solver is based on LAPACK's `*GEEV` backends.

`overwrite_a` (optional): Shall be an input logical flag. if `.true.`, input matrix `a` will be used as temporary storage and overwritten. This avoids internal data allocation. This is an `intent(in)` argument.

`overwrite_b` (optional): Shall be an input logical flag. If `.true.`, input matrix `b` will be used as temporary storage and overwritten. This avoids internal data allocation. This is an `intent(in)` argument.

`err` (optional): Shall be a `type(linalg_state_type)` value. This is an `intent(out)` argument.

### Return value
Expand Down Expand Up @@ -1185,28 +1197,41 @@ Stable

### Description

This function returns the eigenvalues to matrix \( A \): a square, full-rank, `real` or `complex` matrix.
The eigenvalues are solutions to the eigenproblem \( A \cdot \bar{v} - \lambda \cdot \bar{v} \).
This function computes the eigenvalues for either a standard or generalized eigenproblem:

Result array `lambda` is `complex`, and returns the eigenvalues of \( A \).
The solver is based on LAPACK's `*GEEV` backends.
- **Standard eigenproblem**: \( A \cdot \bar{v} - \lambda \cdot \bar{v} \), where \( A \) is a square, full-rank `real` or `complex` matrix.
- **Generalized eigenproblem**: \( A \cdot \bar{v} - \lambda \cdot B \cdot \bar{v} \), where \( B \) is a square matrix with the same type and kind as \( A \).

The eigenvalues are stored in the result array `lambda`, which is `complex` (even for real input matrices).
The solver uses LAPACK's `*GEEV` and `*GGEV` backends for the standard and generalized problems, respectively.

### Syntax

`lambda = ` [[stdlib_linalg(module):eigvals(interface)]] `(a, [,err])`
For the standard eigenproblem:

`lambda = ` [[stdlib_linalg(module):eigvals(interface)]] `(a [, err])`

For the generalized eigenproblem:

`lambda = ` [[stdlib_linalg(module):eigvals(interface)]] `(a, b [, err])`

### Arguments

`a` : `real` or `complex` square array containing the coefficient matrix. It is an `intent(in)` argument.
`a`:
Shall be a `real` or `complex` square array containing the coefficient matrix. It is an `intent(in)` argument.

`err` (optional): Shall be a `type(linalg_state_type)` value. This is an `intent(out)` argument.
`b` (optional):
Shall be a `real` or `complex` square array containing the second coefficient matrix for the generalized problem. It is an `intent(in)` argument.

### Return value
`err` (optional):
Shall be a `type(linalg_state_type)` value. This is an `intent(out)` argument.

Returns a `complex` array containing the eigenvalues of `a`.
### Return Value

Raises `LINALG_ERROR` if the calculation did not converge.
Raises `LINALG_VALUE_ERROR` if any matrix or arrays have invalid/incompatible sizes.
Returns a `complex` rank-1 array containing the eigenvalues of the problem.

Raises `LINALG_ERROR` if the calculation did not converge.
Raises `LINALG_VALUE_ERROR` if any matrix or arrays have invalid/incompatible sizes.
If `err` is not present, exceptions trigger an `error stop`.

### Example
Expand Down
2 changes: 2 additions & 0 deletions example/linalg/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,10 @@ ADD_EXAMPLE(pseudoinverse)
ADD_EXAMPLE(outer_product)
ADD_EXAMPLE(eig)
ADD_EXAMPLE(eigh)
ADD_EXAMPLE(eig_generalized)
ADD_EXAMPLE(eigvals)
ADD_EXAMPLE(eigvalsh)
ADD_EXAMPLE(eigvals_generalized)
ADD_EXAMPLE(trace)
ADD_EXAMPLE(state1)
ADD_EXAMPLE(state2)
Expand Down
30 changes: 30 additions & 0 deletions example/linalg/example_eig_generalized.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
! Eigendecomposition of a real square matrix for the generalized eigenproblem
program example_eig_generalized
use stdlib_linalg, only: eig, eye
implicit none

integer :: i
real, allocatable :: A(:,:), B(:,:)
complex, allocatable :: lambda(:), vectors(:,:)

! Matrices for the generalized eigenproblem: A * v = lambda * B * v
! NB Fortran is column-major -> transpose input
A = transpose(reshape([ [2, 2, 4], &
[1, 3, 5], &
[2, 3, 4] ], [3,3]))

B = eye(3)

! Allocate eigenvalues and right eigenvectors
allocate(lambda(3), vectors(3,3))

! Get eigenvalues and right eigenvectors for the generalized problem
call eig(A, B, lambda, right=vectors)

do i = 1, 3
print *, 'Eigenvalue ', i, ': ', lambda(i)
print *, 'Eigenvector ', i, ': ', vectors(:,i)
end do

end program example_eig_generalized

26 changes: 26 additions & 0 deletions example/linalg/example_eigvals_generalized.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
! Eigenvalues of a general real/complex matrix for the generalized eigenproblem
program example_eigvals_generalized
use stdlib_linalg, only: eigvals, eye
implicit none

real, allocatable :: A(:,:), B(:,:), lambda(:)
complex, allocatable :: cA(:,:), cB(:,:), clambda(:)

! NB Fortran is column-major -> transpose input
A = transpose(reshape([ [2, 8, 4], &
[1, 3, 5], &
[9, 5,-2] ], [3,3]))

B = eye(3)

! Real generalized eigenproblem
lambda = eigvals(A, B)
print *, 'Real generalized matrix eigenvalues: ', lambda

! Complex generalized eigenproblem
cA = cmplx(A, -2*A)
cB = cmplx(B, 0.5*B)
clambda = eigvals(cA, cB)
print *, 'Complex generalized matrix eigenvalues: ', clambda

end program example_eigvals_generalized
66 changes: 44 additions & 22 deletions src/stdlib_linalg.fypp
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,9 @@
#:set RHS_SYMBOL = [ranksuffix(r) for r in [1,2]]
#:set RHS_EMPTY = [emptyranksuffix(r) for r in [1,2]]
#:set ALL_RHS = list(zip(RHS_SYMBOL,RHS_SUFFIX,RHS_EMPTY))
#:set EIG_PROBLEM = ["standard", "generalized"]
#:set EIG_FUNCTION = ["geev","ggev"]
#:set EIG_PROBLEM_LIST = list(zip(EIG_PROBLEM, EIG_FUNCTION))
module stdlib_linalg
!!Provides a support for various linear algebra procedures
!! ([Specification](../page/specs/stdlib_linalg.html))
Expand Down Expand Up @@ -1084,12 +1087,17 @@ module stdlib_linalg
!!@note BLAS/LAPACK backends do not currently support extended precision (``xdp``).
!!
#:for rk,rt,ri in RC_KINDS_TYPES
#:if rk!="xdp"
module subroutine stdlib_linalg_eig_${ri}$(a,lambda,right,left,overwrite_a,err)
#:for ep,ei in EIG_PROBLEM_LIST
module subroutine stdlib_linalg_eig_${ep}$_${ri}$(a#{if ei=='ggev'}#,b#{endif}#,lambda,right,left, &
overwrite_a#{if ei=='ggev'}#,overwrite_b#{endif}#,err)
!! Eigendecomposition of matrix A returning an array `lambda` of eigenvalues,
!! and optionally right or left eigenvectors.
!> Input matrix A[m,n]
${rt}$, intent(inout), target :: a(:,:)
#:if ei=='ggev'
!> Generalized problem matrix B[n,n]
${rt}$, intent(inout), target :: b(:,:)
#:endif
!> Array of eigenvalues
complex(${rk}$), intent(out) :: lambda(:)
!> The columns of RIGHT contain the right eigenvectors of A
Expand All @@ -1098,19 +1106,25 @@ module stdlib_linalg
complex(${rk}$), optional, intent(out), target :: left(:,:)
!> [optional] Can A data be overwritten and destroyed?
logical(lk), optional, intent(in) :: overwrite_a
#:if ei=='ggev'
!> [optional] Can B data be overwritten and destroyed? (default: no)
logical(lk), optional, intent(in) :: overwrite_b
#:endif
!> [optional] state return flag. On error if not requested, the code will stop
type(linalg_state_type), optional, intent(out) :: err
end subroutine stdlib_linalg_eig_${ri}$
#:endif
#:endfor
#:for rk,rt,ri in REAL_KINDS_TYPES
#:if rk!="xdp"
module subroutine stdlib_linalg_real_eig_${ri}$(a,lambda,right,left,overwrite_a,err)
end subroutine stdlib_linalg_eig_${ep}$_${ri}$
module subroutine stdlib_linalg_real_eig_${ep}$_${ri}$(a#{if ei=='ggev'}#,b#{endif}#,lambda,right,left, &
overwrite_a#{if ei=='ggev'}#,overwrite_b#{endif}#,err)
!! Eigendecomposition of matrix A returning an array `lambda` of real eigenvalues,
!! and optionally right or left eigenvectors. Returns an error if the eigenvalues had
!! non-trivial imaginary parts.
!> Input matrix A[m,n]
${rt}$, intent(inout), target :: a(:,:)
#:if ei=='ggev'
!> Generalized problem matrix B[n,n]
${rt}$, intent(inout), target :: b(:,:)
#:endif
!> Array of real eigenvalues
real(${rk}$), intent(out) :: lambda(:)
!> The columns of RIGHT contain the right eigenvectors of A
Expand All @@ -1119,11 +1133,15 @@ module stdlib_linalg
complex(${rk}$), optional, intent(out), target :: left(:,:)
!> [optional] Can A data be overwritten and destroyed?
logical(lk), optional, intent(in) :: overwrite_a
#:if ei=='ggev'
!> [optional] Can B data be overwritten and destroyed? (default: no)
logical(lk), optional, intent(in) :: overwrite_b
#:endif
!> [optional] state return flag. On error if not requested, the code will stop
type(linalg_state_type), optional, intent(out) :: err
end subroutine stdlib_linalg_real_eig_${ri}$
#:endif
end subroutine stdlib_linalg_real_eig_${ep}$_${ri}$
#:endfor
#:endfor
end interface eig
! Eigenvalues of a square matrix
Expand All @@ -1147,25 +1165,33 @@ module stdlib_linalg
!!@note BLAS/LAPACK backends do not currently support extended precision (``xdp``).
!!
#:for rk,rt,ri in RC_KINDS_TYPES
#:if rk!="xdp"
module function stdlib_linalg_eigvals_${ri}$(a,err) result(lambda)
#:for ep,ei in EIG_PROBLEM_LIST
module function stdlib_linalg_eigvals_${ep}$_${ri}$(a#{if ei=='ggev'}#,b#{endif}#,err) result(lambda)
!! Return an array of eigenvalues of matrix A.
!> Input matrix A[m,n]
${rt}$, intent(in), target :: a(:,:)
${rt}$, intent(in), dimension(:,:), target :: a
#:if ei=='ggev'
!> Generalized problem matrix B[n,n]
${rt}$, intent(inout), dimension(:,:), target :: b
#:endif
!> [optional] state return flag. On error if not requested, the code will stop
type(linalg_state_type), intent(out) :: err
!> Array of singular values
complex(${rk}$), allocatable :: lambda(:)
end function stdlib_linalg_eigvals_${ri}$
end function stdlib_linalg_eigvals_${ep}$_${ri}$

module function stdlib_linalg_eigvals_noerr_${ri}$(a) result(lambda)
module function stdlib_linalg_eigvals_noerr_${ep}$_${ri}$(a#{if ei=='ggev'}#,b#{endif}#) result(lambda)
!! Return an array of eigenvalues of matrix A.
!> Input matrix A[m,n]
${rt}$, intent(in), target :: a(:,:)
${rt}$, intent(in), dimension(:,:), target :: a
#:if ei=='ggev'
!> Generalized problem matrix B[n,n]
${rt}$, intent(inout), dimension(:,:), target :: b
#:endif
!> Array of singular values
complex(${rk}$), allocatable :: lambda(:)
end function stdlib_linalg_eigvals_noerr_${ri}$
#:endif
end function stdlib_linalg_eigvals_noerr_${ep}$_${ri}$
#:endfor
#:endfor
end interface eigvals

Expand Down Expand Up @@ -1194,7 +1220,6 @@ module stdlib_linalg
!!@note BLAS/LAPACK backends do not currently support extended precision (``xdp``).
!!
#:for rk,rt,ri in RC_KINDS_TYPES
#:if rk!="xdp"
module subroutine stdlib_linalg_eigh_${ri}$(a,lambda,vectors,upper_a,overwrite_a,err)
!! Eigendecomposition of a real symmetric or complex Hermitian matrix A returning an array `lambda`
!! of eigenvalues, and optionally right or left eigenvectors.
Expand All @@ -1211,7 +1236,6 @@ module stdlib_linalg
!> [optional] state return flag. On error if not requested, the code will stop
type(linalg_state_type), optional, intent(out) :: err
end subroutine stdlib_linalg_eigh_${ri}$
#:endif
#:endfor
end interface eigh
Expand Down Expand Up @@ -1239,7 +1263,6 @@ module stdlib_linalg
!!@note BLAS/LAPACK backends do not currently support extended precision (``xdp``).
!!
#:for rk,rt,ri in RC_KINDS_TYPES
#:if rk!="xdp"
module function stdlib_linalg_eigvalsh_${ri}$(a,upper_a,err) result(lambda)
!! Return an array of eigenvalues of real symmetric / complex hermitian A
!> Input matrix A[m,n]
Expand All @@ -1261,7 +1284,6 @@ module stdlib_linalg
!> Array of singular values
real(${rk}$), allocatable :: lambda(:)
end function stdlib_linalg_eigvalsh_noerr_${ri}$
#:endif
#:endfor
end interface eigvalsh

Expand Down
Loading

0 comments on commit cdde132

Please sign in to comment.