Skip to content

Commit

Permalink
corrections
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Jun 10, 2024
1 parent 5a35ab8 commit 93786d4
Show file tree
Hide file tree
Showing 8 changed files with 34 additions and 10 deletions.
4 changes: 2 additions & 2 deletions trees/agda-0005.tree
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
\taxon{formalization}
\author{fredrik-bakke}
\title{Wild #{(\infty,\infty)}-categories}
\title{Wild higher categories}
\meta{external}{https://unimath.github.io/agda-unimath/wild-category-theory.html}
\meta{status}{on the shelf}

\p{
We can utilize parts of #{(\infty,\infty)}-category theory in univalent type theory using a globular model.
We can utilize parts of higher category theory in univalent type theory using a globular model.
[agda-unimath#1099](https://github.com/UniMath/agda-unimath/pull/1099)
This is a collaborative effort together with [[vojtech-stepancik]].
}
20 changes: 19 additions & 1 deletion trees/common.tree
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,16 @@
}
}

\def\question[body]{
\scope{
\put\transclude/toc{false}
\subtree{
\taxon{question}
\body
}
}
}

\def\proof[body]{
\scope{
\put\transclude/toc{false}
Expand Down Expand Up @@ -107,7 +117,8 @@
\def\unit-type{#{\textbf{1}}}
\def\bool-type{#{\textbf{2}}}
\def\directed-interval{#{𝟚}}
\def\sphere-type{#{\mathbb{S}}}
\def\sphere{#{\mathbb{S}}}
\def\directed-sphere{#{{\vec{\sphere}}}}
\def\bN{#{\mathbb{N}}}

\def\jdgeq{#{\equiv}}
Expand All @@ -124,7 +135,10 @@
\def\po{{#{⌜}}}

\def\hom-map{#{\mathop{\texttt{hom-map}}}}
\def\spine[dimension]{#{\mathop{\texttt{spine}}{\dimension}}}
\def\ap{#{\mathop{\texttt{ap}}}}
\def\pr{#{\mathop{\texttt{pr}}}}
\def\directed-suspension{#{\mathop{\vec{\Sigma}}}}
\def\point{#{\mathop{\texttt{point}}}}
\def\rec{#{\mathop{\texttt{rec}}}}
\def\ind{#{\mathop{\texttt{ind}}}}
Expand All @@ -136,6 +150,10 @@
\def\fiberwise-orthogonal{#{\mathrel{\perp^\mathrm{f}}}}

\def\Hom{#{\textrm{Hom}}}
\def\Set{#{\textrm{Set}}}
\def\Prop{#{\textrm{Prop}}}
\def\Space{#{\textrm{S}}}
\def\op[x]{#{{\x}^{\textrm{op}}}}
\def\simplex-category{#{\mathbf{\Delta}}}


Expand Down
5 changes: 5 additions & 0 deletions trees/fb-0001.tree
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,11 @@
This is my personal page where I manage my personal notes as well as miscellaneous exposition related to my work. The web page is written using [Forester](https://www.jonmsterling.com/jms-005P.xml).
}

\p{
Please keep in mind that this web page is in early development and is thus largely incomplete and may be subject to big changes in the future.
}


\scope{
\transclude{fb-0002}
\transclude{fb-0003}
Expand Down
2 changes: 1 addition & 1 deletion trees/fb-0004.tree
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
\taxon{lecture note}
\title{Segal spaces in Homotopy Type Theory}
\date{2024-05-15}
\date{2024-05-16}
\author{fredrik-bakke}
\import{common}
\meta{venue}{FMF, University of Ljubljana}
Expand Down
2 changes: 1 addition & 1 deletion trees/hott-000G.tree
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
The unique lifting condition asks that there, for every element #{y : Y} exists a unique #{x : X} such that #{g(x) = y}. In other words, the fibers of #{g} must be contractible.
}
\li{
More generally, a map is #{n}-truncated iff it is #{(\sphere-type^{n+1}\to \unit-type)}-orthogonal.
More generally, a map is #{n}-truncated iff it is #{(\sphere^{n+1}\to \unit-type)}-orthogonal.
}
}
}
2 changes: 1 addition & 1 deletion trees/hott-000H.tree
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
Equivalences are orthogonal to every map, so every map is #{(\empty-type \to \unit-type)}-anodyne.
}
\li{
#{(n+1)}-truncated maps are also #{n}-truncated, so the map #{(\sphere-type^n\to \unit-type)} is #{(\sphere-type^{n-1}\to \unit-type)}-anodyne.
#{(n+1)}-truncated maps are also #{n}-truncated, so the map #{(\sphere^n\to \unit-type)} is #{(\sphere^{n-1}\to \unit-type)}-anodyne.
}
}
}
2 changes: 1 addition & 1 deletion trees/stt-000E.tree
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,6 @@
\import{common}

\transclude{stt-000F}
\transclude{stt-000G}
\transclude{stt-000H}
\transclude{stt-000G}
\transclude{stt-000K}
7 changes: 4 additions & 3 deletions trees/stt-000G.tree
Original file line number Diff line number Diff line change
Expand Up @@ -6,13 +6,14 @@
\p{
Let #{A} be a Segal type and let every type labelled with a "#{B}" be Segal. Then the following types are also Segal
\ol{
\li{Retracts of Segal types}
\li{#{\sigma-type{a : A}B(a)}}
\li{Retracts of #{A}}
\li{#{\pi-type{i : I}B(i)}}
\li{#{I \to B}}
\li{#{B_1 \times B_2}}
\li{#{B_1 \times_A B_2}}
\li{#{\lim_{(n:\bN)} B_n}}
\li{#{\lim_{(n:\bN)} B_n}}.
}

Moreover, if #{B} is an inner family over #{A}, then #{\sigma-type{x:A}B(x)} is Segal.
}
\proof{Follows by [[hott-0004]].}

0 comments on commit 93786d4

Please sign in to comment.