Code and data for the paper "A Quantum-like approach to Word Sense Disambiguation" at RANLP2019.
Tested using:
- Python 3.6.3
- Numpy 1.15.4
- Scipy 0.19.1
- NLTK 3.2.5
- lxml 4.3.0
For reproducing our results:
- Clone the repository.
- Install the NLTK WordNet corpus package.
- Download complex embeddings from this link.
- Classify all the instances taken from the standard benchmark created by [Raganato et al. 2017].
python3 QWSD.py TestX9c.bin Evaluation_Datasets/ALL/ALL.data.xml > Test
- Evaluate the results:
bash ./ScoreAll.sh Test
If you find this code useful in your research, please cite:
@inproceedings{Tamburini:2019:RANLP,
author = {Fabio Tamburini},
editor = {Ruslan Mitkov and
Galia Angelova},
title = {A Quantum-Like Approach to Word Sense Disambiguation},
booktitle = {Proceedings of the International Conference on Recent Advances in
Natural Language Processing, {RANLP} 2019, Varna, Bulgaria, September
2-4, 2019},
pages = {1176--1185},
publisher = {{INCOMA} Ltd.},
year = {2019},
url = {https://doi.org/10.26615/978-954-452-056-4\_135},
doi = {10.26615/978-954-452-056-4\_135},
}
In case of problems contact me at [email protected].