Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

X86 pedestrian detection smart distancing #12

Open
wants to merge 20 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
20 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion config-skeleton.ini
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ Resolution: 640,480
[Detector]
; Supported devices: Jetson , EdgeTPU, Dummy
Device: EdgeTPU
; Detector's Name can be either "mobilenet_ssd_v2", "pedestrian_ssdlite_mobilenet_v2" or "pedestrian_ssdlite_mobilenet_v2"
; Detector's Name can be either "mobilenet_ssd_v2", "pedestrian_ssd_mobilenet_v2" or "pedestrian_ssdlite_mobilenet_v2"
; the first one is trained on COCO dataset and next two are trained on Oxford Town Center dataset to detect pedestrians
Name: pedestrian_ssdlite_mobilenet_v2
;ImageSize should be 3 numbers seperated by commas, no spaces: 300,300,3
Expand Down
5 changes: 4 additions & 1 deletion config-x86.ini
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,11 @@ Resolution: 640,480
[Detector]
; Supported devices: Jetson , EdgeTPU, Dummy
Device: x86
Name: mobilenet_ssd_v2
;Name can be either ssd_mobilenet_v2 or pedestrian_ssd_mobilenet_v2 or pedestrian_ssdlite_mobilenet_v2 or pedestrian_ssdlite_mobilenet_v2 or pedestrian_faster_rcnn_resnet50
;The first one is trained on COCO dataset and next four are trained on Oxford Town Center dataset to detect pedestrians
Name: pedestrian_ssd_mobilenet_v2
;ImageSize should be 3 numbers seperated by commas, no spaces: 300,300,3
;For the pedestrian_ssdlite_mobilenet_v3: 320,320,3
ImageSize: 300,300,3
ModelPath:
ClassID: 1
Expand Down
18 changes: 15 additions & 3 deletions libs/detectors/x86/detector.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,12 +13,24 @@ def __init__(self, config):
self.config = config
self.name = self.config.get_section_dict('Detector')['Name']

if self.name == 'mobilenet_ssd_v2':
from libs.detectors.x86 import mobilenet_ssd
self.net = mobilenet_ssd.Detector(self.config)
if self.name == 'ssd_mobilenet_v2':
from libs.detectors.x86 import ssd_mobilenet_v2
self.net = ssd_mobilenet_v2.Detector(self.config)
elif self.name == "openvino":
from libs.detectors.x86 import openvino
self.net = openvino.Detector(self.config)
elif self.name == "pedestrian_ssd_mobilenet_v2":
from libs.detectors.x86 import pedestrian_ssd_mobilenet_v2
self.net = pedestrian_ssd_mobilenet_v2.Detector(self.config)
elif self.name == "pedestrian_ssdlite_mobilenet_v2":
from libs.detectors.x86 import pedestrian_ssdlite_mobilenet_v2
self.net = pedestrian_ssdlite_mobilenet_v2.Detector(self.config)
elif self.name == "pedestrian_ssdlite_mobilenet_v3":
from libs.detectors.x86 import pedestrian_ssdlite_mobilenet_v3
self.net = pedestrian_ssdlite_mobilenet_v3.Detector(self.config)
elif self.name == "pedestrian_faster_rcnn_resnet50":
from libs.detectors.x86 import pedestrian_faster_rcnn_resnet50
self.net = pedestrian_faster_rcnn_resnet50.Detector(self.config)
else:
raise ValueError('Not supported network named: ', self.name)

Expand Down
77 changes: 77 additions & 0 deletions libs/detectors/x86/pedestrian_faster_rcnn_resnet50.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import pathlib
import time
import os
import numpy as np
import wget
import tensorflow as tf

from libs.detectors.utils.fps_calculator import convert_infr_time_to_fps


def load_model(model_name):
base_url = 'https://raw.githubusercontent.com/neuralet/neuralet-models/master/amd64/'
model_file = model_name + "/saved_model/saved_model.pb"
base_dir = "/repo/data/x86/"
model_dir = os.path.join(base_dir, model_name)
if not os.path.isdir(model_dir):
os.makedirs(os.path.join(model_dir, "saved_model"), exist_ok=True)
print('model does not exist under: ', model_dir, 'downloading from ', base_url + model_file)
wget.download(base_url + model_file, os.path.join(model_dir, "saved_model"))

model_dir = pathlib.Path(model_dir) / "saved_model"

model = tf.saved_model.load(str(model_dir))
model = model.signatures['serving_default']

return model


class Detector:
"""
Perform object detection with the given model. The model is a quantized tflite
file which if the detector can not find it at the path it will download it
from neuralet repository automatically.

:param config: Is a ConfigEngine instance which provides necessary parameters.
"""

def __init__(self, config):
self.config = config
# Get the model name from the config
self.model_name = self.config.get_section_dict('Detector')['Name']
# Frames Per Second
self.fps = None

self.detection_model = load_model('ped_faster_rcnn_resnet50')

def inference(self, resized_rgb_image):
"""
inference function sets input tensor to input image and gets the output.
The interpreter instance provides corresponding detection output which is used for creating result
Args:
resized_rgb_image: uint8 numpy array with shape (img_height, img_width, channels)

Returns:
result: a dictionary contains of [{"id": 0, "bbox": [x1, y1, x2, y2], "score":s%}, {...}, {...}, ...]
"""
input_image = np.expand_dims(resized_rgb_image, axis=0)
input_tensor = tf.convert_to_tensor(input_image)
t_begin = time.perf_counter()
output_dict = self.detection_model(input_tensor)
inference_time = time.perf_counter() - t_begin # Seconds

# Calculate Frames rate (fps)
self.fps = convert_infr_time_to_fps(inference_time)

boxes = output_dict['detection_boxes']
labels = output_dict['detection_classes']
scores = output_dict['detection_scores']

class_id = int(self.config.get_section_dict('Detector')['ClassID'])
score_threshold = float(self.config.get_section_dict('Detector')['MinScore'])
result = []
for i in range(boxes.shape[1]): # number of boxes
if labels[0, i] == class_id and scores[0, i] > score_threshold:
result.append({"id": str(class_id) + '-' + str(i), "bbox": boxes[0, i, :], "score": scores[0, i]})

return result
77 changes: 77 additions & 0 deletions libs/detectors/x86/pedestrian_ssd_mobilenet_v2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import pathlib
import time
import os
import numpy as np
import wget
import tensorflow as tf

from libs.detectors.utils.fps_calculator import convert_infr_time_to_fps


def load_model(model_name):
base_url = 'https://raw.githubusercontent.com/neuralet/neuralet-models/master/amd64/'
model_file = model_name + "/saved_model/saved_model.pb"
base_dir = "/repo/data/x86/"
model_dir = os.path.join(base_dir, model_name)
if not os.path.isdir(model_dir):
os.makedirs(os.path.join(model_dir, "saved_model"), exist_ok=True)
print('model does not exist under: ', model_dir, 'downloading from ', base_url + model_file)
wget.download(base_url + model_file, os.path.join(model_dir, "saved_model"))

model_dir = pathlib.Path(model_dir) / "saved_model"

model = tf.saved_model.load(str(model_dir))
model = model.signatures['serving_default']

return model


class Detector:
"""
Perform object detection with the given model. The model is a quantized tflite
file which if the detector can not find it at the path it will download it
from neuralet repository automatically.

:param config: Is a ConfigEngine instance which provides necessary parameters.
"""

def __init__(self, config):
self.config = config
# Get the model name from the config
self.model_name = self.config.get_section_dict('Detector')['Name']
# Frames Per Second
self.fps = None

self.detection_model = load_model('ped_ssd_mobilenet_v2')

def inference(self, resized_rgb_image):
"""
inference function sets input tensor to input image and gets the output.
The interpreter instance provides corresponding detection output which is used for creating result
Args:
resized_rgb_image: uint8 numpy array with shape (img_height, img_width, channels)

Returns:
result: a dictionary contains of [{"id": 0, "bbox": [x1, y1, x2, y2], "score":s%}, {...}, {...}, ...]
"""
input_image = np.expand_dims(resized_rgb_image, axis=0)
input_tensor = tf.convert_to_tensor(input_image)
t_begin = time.perf_counter()
output_dict = self.detection_model(input_tensor)
inference_time = time.perf_counter() - t_begin # Seconds

# Calculate Frames rate (fps)
self.fps = convert_infr_time_to_fps(inference_time)

boxes = output_dict['detection_boxes']
labels = output_dict['detection_classes']
scores = output_dict['detection_scores']

class_id = int(self.config.get_section_dict('Detector')['ClassID'])
score_threshold = float(self.config.get_section_dict('Detector')['MinScore'])
result = []
for i in range(boxes.shape[1]): # number of boxes
if labels[0, i] == class_id and scores[0, i] > score_threshold:
result.append({"id": str(class_id) + '-' + str(i), "bbox": boxes[0, i, :], "score": scores[0, i]})

return result
77 changes: 77 additions & 0 deletions libs/detectors/x86/pedestrian_ssdlite_mobilenet_v2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import pathlib
import time
import os
import numpy as np
import wget
import tensorflow as tf

from libs.detectors.utils.fps_calculator import convert_infr_time_to_fps


def load_model(model_name):
base_url = 'https://raw.githubusercontent.com/neuralet/neuralet-models/master/amd64/'
model_file = model_name + "/saved_model/saved_model.pb"
base_dir = "/repo/data/x86/"
model_dir = os.path.join(base_dir, model_name)
if not os.path.isdir(model_dir):
os.makedirs(os.path.join(model_dir, "saved_model"), exist_ok=True)
print('model does not exist under: ', model_dir, 'downloading from ', base_url + model_file)
wget.download(base_url + model_file, os.path.join(model_dir, "saved_model"))

model_dir = pathlib.Path(model_dir) / "saved_model"

model = tf.saved_model.load(str(model_dir))
model = model.signatures['serving_default']

return model


class Detector:
"""
Perform object detection with the given model. The model is a quantized tflite
file which if the detector can not find it at the path it will download it
from neuralet repository automatically.

:param config: Is a ConfigEngine instance which provides necessary parameters.
"""

def __init__(self, config):
self.config = config
# Get the model name from the config
self.model_name = self.config.get_section_dict('Detector')['Name']
# Frames Per Second
self.fps = None

self.detection_model = load_model('ped_ssdlite_mobilenet_v2')

def inference(self, resized_rgb_image):
"""
inference function sets input tensor to input image and gets the output.
The interpreter instance provides corresponding detection output which is used for creating result
Args:
resized_rgb_image: uint8 numpy array with shape (img_height, img_width, channels)

Returns:
result: a dictionary contains of [{"id": 0, "bbox": [x1, y1, x2, y2], "score":s%}, {...}, {...}, ...]
"""
input_image = np.expand_dims(resized_rgb_image, axis=0)
input_tensor = tf.convert_to_tensor(input_image)
t_begin = time.perf_counter()
output_dict = self.detection_model(input_tensor)
inference_time = time.perf_counter() - t_begin # Seconds

# Calculate Frames rate (fps)
self.fps = convert_infr_time_to_fps(inference_time)

boxes = output_dict['detection_boxes']
labels = output_dict['detection_classes']
scores = output_dict['detection_scores']

class_id = int(self.config.get_section_dict('Detector')['ClassID'])
score_threshold = float(self.config.get_section_dict('Detector')['MinScore'])
result = []
for i in range(boxes.shape[1]): # number of boxes
if labels[0, i] == class_id and scores[0, i] > score_threshold:
result.append({"id": str(class_id) + '-' + str(i), "bbox": boxes[0, i, :], "score": scores[0, i]})

return result
77 changes: 77 additions & 0 deletions libs/detectors/x86/pedestrian_ssdlite_mobilenet_v3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import pathlib
import time
import os
import numpy as np
import wget
import tensorflow as tf

from libs.detectors.utils.fps_calculator import convert_infr_time_to_fps


def load_model(model_name):
base_url = 'https://raw.githubusercontent.com/neuralet/neuralet-models/master/amd64/'
model_file = model_name + "/saved_model/saved_model.pb"
base_dir = "/repo/data/x86/"
model_dir = os.path.join(base_dir, model_name)
if not os.path.isdir(model_dir):
os.makedirs(os.path.join(model_dir, "saved_model"), exist_ok=True)
print('model does not exist under: ', model_dir, 'downloading from ', base_url + model_file)
wget.download(base_url + model_file, os.path.join(model_dir, "saved_model"))

model_dir = pathlib.Path(model_dir) / "saved_model"

model = tf.saved_model.load(str(model_dir))
model = model.signatures['serving_default']

return model


class Detector:
"""
Perform object detection with the given model. The model is a quantized tflite
file which if the detector can not find it at the path it will download it
from neuralet repository automatically.

:param config: Is a ConfigEngine instance which provides necessary parameters.
"""

def __init__(self, config):
self.config = config
# Get the model name from the config
self.model_name = self.config.get_section_dict('Detector')['Name']
# Frames Per Second
self.fps = None

self.detection_model = load_model('ped_ssdlite_mobilenet_v3')

def inference(self, resized_rgb_image):
"""
inference function sets input tensor to input image and gets the output.
The interpreter instance provides corresponding detection output which is used for creating result
Args:
resized_rgb_image: uint8 numpy array with shape (img_height, img_width, channels)

Returns:
result: a dictionary contains of [{"id": 0, "bbox": [x1, y1, x2, y2], "score":s%}, {...}, {...}, ...]
"""
input_image = np.expand_dims(resized_rgb_image, axis=0)
input_tensor = tf.convert_to_tensor(input_image)
t_begin = time.perf_counter()
output_dict = self.detection_model(input_tensor)
inference_time = time.perf_counter() - t_begin # Seconds

# Calculate Frames rate (fps)
self.fps = convert_infr_time_to_fps(inference_time)

boxes = output_dict['detection_boxes']
labels = output_dict['detection_classes']
scores = output_dict['detection_scores']

class_id = int(self.config.get_section_dict('Detector')['ClassID'])
score_threshold = float(self.config.get_section_dict('Detector')['MinScore'])
result = []
for i in range(boxes.shape[1]): # number of boxes
if labels[0, i] == class_id and scores[0, i] > score_threshold:
result.append({"id": str(class_id) + '-' + str(i), "bbox": boxes[0, i, :], "score": scores[0, i]})

return result
Loading