First of all, please request the research edition dataset from here. The downloaded file is named as mapillary-vistas-dataset_public_v1.1.zip
.
Then simply unzip the file by
unzip mapillary-vistas-dataset_public_v1.1.zip
The folder structure will look like:
Mapillary
├── config.json
├── demo.py
├── Mapillary Vistas Research Edition License.pdf
├── README
├── requirements.txt
├── training
│ ├── images
│ ├── instances
│ ├── labels
│ ├── panoptic
├── validation
│ ├── images
│ ├── instances
│ ├── labels
│ ├── panoptic
├── testing
│ ├── images
│ ├── instances
│ ├── labels
│ ├── panoptic
Note that, the instances
, labels
and panoptic
folders inside testing
are empty.
Suppose you store your dataset at ~/username/data/Mapillary
, please update the dataset path in config.py
,
__C.DATASET.MAPILLARY_DIR = '~/username/data/Mapillary'
First of all, please request the dataset from here. You need multiple files.
- leftImg8bit_trainvaltest.zip
- gtFine_trainvaltest.zip
- leftImg8bit_trainextra.zip
- gtCoarse.zip
- leftImg8bit_sequence.zip # This file is very large, 324G. You only need it if you want to run sdc_aug experiments.
If you prefer to use command lines (e.g., wget
) to download the dataset,
# First step, obtain your login credentials.
Please register an account at https://www.cityscapes-dataset.com/login/.
# Second step, log into cityscapes system, suppose you already have a USERNAME and a PASSWORD.
wget --keep-session-cookies --save-cookies=cookies.txt --post-data 'username=USERNAME&password=PASSWORD&submit=Login' https://www.cityscapes-dataset.com/login/
# Third step, download the zip files you need.
wget -c -t 0 --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=3
# The corresponding packageID is listed below,
1 -> gtFine_trainvaltest.zip (241MB) md5sum: 4237c19de34c8a376e9ba46b495d6f66
2 -> gtCoarse.zip (1.3GB) md5sum: 1c7b95c84b1d36cc59a9194d8e5b989f
3 -> leftImg8bit_trainvaltest.zip (11GB) md5sum: 0a6e97e94b616a514066c9e2adb0c97f
4 -> leftImg8bit_trainextra.zip (44GB) md5sum: 9167a331a158ce3e8989e166c95d56d4
14 -> leftImg8bit_sequence.zip (324GB) md5sum: 4348961b135d856c1777f7f1098f7266
Now unzip those files, the desired folder structure will look like,
Cityscapes
├── leftImg8bit_trainvaltest
│ ├── leftImg8bit
│ │ ├── train
│ │ │ ├── aachen
│ │ │ │ ├── aachen_000000_000019_leftImg8bit.png
│ │ │ │ ├── aachen_000001_000019_leftImg8bit.png
│ │ │ │ ├── ...
│ │ │ ├── bochum
│ │ │ ├── ...
│ │ ├── val
│ │ ├── test
├── gtFine_trainvaltest
│ ├── gtFine
│ │ ├── train
│ │ │ ├── aachen
│ │ │ │ ├── aachen_000000_000019_gtFine_color.png
│ │ │ │ ├── aachen_000000_000019_gtFine_instanceIds.png
│ │ │ │ ├── aachen_000000_000019_gtFine_labelIds.png
│ │ │ │ ├── aachen_000000_000019_gtFine_polygons.json
│ │ │ │ ├── ...
│ │ │ ├── bochum
│ │ │ ├── ...
│ │ ├── val
│ │ ├── test
├── leftImg8bit_trainextra
│ ├── leftImg8bit
│ │ ├── train_extra
│ │ │ ├── augsburg
│ │ │ ├── bad-honnef
│ │ │ ├── ...
├── gtCoarse
│ ├── gtCoarse
│ │ ├── train
│ │ ├── train_extra
│ │ ├── val
├── leftImg8bit_sequence
│ ├── train
│ ├── val
│ ├── test
Please download and prepare this dataset according to the tutorial. The desired folder structure will look like,
CamVid
├── train
├── trainannot
├── val
├── valannot
├── test
├── testannot
Please download this dataset at the KITTI Semantic Segmentation benchmark webpage.
Now unzip the file, the desired folder structure will look like,
KITTI
├── training
│ ├── image_2
│ ├── instance
│ ├── semantic
├── test
│ ├── image_2
There is no official training/validation split as the dataset only has 200
training samples. We randomly create three splits at here in order to perform cross-validation.