Skip to content

This project aims to implement the Multi-task-Stacked-Bi-LSTMs applied in detecting the span of the counterfactual statement using ELMo Word Embedding and POS tags.

Notifications You must be signed in to change notification settings

gazelle93/Counterfactual-statement-classification-and-span-dectection-using-Multi-task-Stacked-Bi-LSTMs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview

  • Task: SemEval 2020 Task 5: Modelling Causal Reasoning in Language (Detecting Counterfactuals)
  • Subtask 1: Binary classification task classifying whether the given text is counterfactual or not.
  • Subtask 2: Span detection task detecting the span of the antecedent and the consequent.
  • Applied architecture: Multi-task Stacked Bi-LSTMs using the grammatical feature.
  • This project aims to implement the Multi-task-Stacked-Bi-LSTMs applied in classifying the counterfactual statement (Subtask 1) and detecting the span of the counterfactual statement (Subtask 2) using ELMo Word Embedding and POS tags.

Brief description

  • text_processing.py

Output format

  • output: Tokenized result of a given text. (list)
  • lstms.py

Output format

  • output: List of tensor of attention results. (Tensor)

Prerequisites

  • argparse
  • torch
  • stanza
  • spacy
  • tqdm
  • numpy
  • allennlp
  • pandas
  • sklearn

Parameters

  • nlp_pipeline(str, defaults to "stanza"): NLP preprocessing pipeline.
  • subtask(str, default to "1"): Selection of subtask (1 or 2).
  • learning_rate(float, defaults to 1e-2): Learning rate.
  • num_epochs(int, defaults to 100): The number of epochs for training.

References

  • Multi-task-Stacked-Bi-LSTMs: Sung, M., Bagherzadeh, P., & Bergler, S. (2020, December). CLaC at SemEval-2020 Task 5: Muli-task Stacked Bi-LSTMs. In Proceedings of the Fourteenth Workshop on Semantic Evaluation (pp. 445-450). (https://aclanthology.org/2020.semeval-1.54/)
  • Stanza: Qi, P., Zhang, Y., Zhang, Y., Bolton, J., & Manning, C. D. (2020). Stanza: A Python natural language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082.
  • Spacy: Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. To appear (2017).
  • Counterfactual Dataset: Yang, X., Obadinma, S., Zhao, H., Zhang, Q., Matwin, S., & Zhu, X. (2020). SemEval-2020 task 5: Counterfactual recognition. arXiv preprint arXiv:2008.00563. (https://github.com/arielsho/SemEval-2020-Task-5)

About

This project aims to implement the Multi-task-Stacked-Bi-LSTMs applied in detecting the span of the counterfactual statement using ELMo Word Embedding and POS tags.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages