-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo_scene_generation.py
691 lines (601 loc) · 41.2 KB
/
ppo_scene_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
import argparse
import datetime
import numpy as np
import wandb
import json
import psutil
import os
import random
import time
from distutils.util import strtobool
from RoboSensai_bullet import *
from PPO.PPO_continuous_sg import *
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from multi_envs import *
from utils import *
import threadpoolctl as tpc
import multiprocessing
def parse_args():
parser = argparse.ArgumentParser(description='Train ClutterGen')
# Env hyper parameters
parser.add_argument('--collect_data', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True) # https://docs.python.org/3/library/argparse.html#:~:text=%27%3F%27.%20One%20argument,to%20illustrate%20this%3A
parser.add_argument('--object_pool_name', type=str, default='Union')
parser.add_argument('--rendering', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True)
parser.add_argument('--realtime', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True)
parser.add_argument('--quiet', type=lambda x: bool(strtobool(x)), default=True, nargs='?', const=True)
# ClutterGen Env parameters (dataset)
parser.add_argument('--num_pool_objs', type=int, default=10)
parser.add_argument('--min_num_placing_objs', type=int, default=2)
parser.add_argument('--train_step', type=int, default=2)
parser.add_argument('--max_num_placing_objs', type=int, default=10)
parser.add_argument('--random_select_objs_pool', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True, help='')
parser.add_argument('--random_select_placing', type=lambda x: bool(strtobool(x)), default=True, nargs='?', const=True, help='')
parser.add_argument('--num_pool_scenes', type=int, default=1)
parser.add_argument('--specific_scene', type=str, default="table")
parser.add_argument('--random_select_scene_pool', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True, help='')
parser.add_argument('--fixed_scene_only', type=lambda x: bool(strtobool(x)), default=True, nargs='?', const=True, help='')
parser.add_argument('--fixed_qr_region', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True, help='')
parser.add_argument('--num_episode_to_replace_pool', type=int, default=np.inf)
parser.add_argument('--max_num_obj_points', type=int, default=1024)
parser.add_argument('--max_num_qr_scene_points', type=int, default=10240)
parser.add_argument('--max_num_scene_points', type=int, default=20480)
parser.add_argument('--tablehalfExtents', type=json.loads, default=[0.3, 0.35, 0.35], help='Table half extents; Before we use [0.2, 0.3, 0.35]')
parser.add_argument('--QueryRegion_halfext', type=json.loads, default=None, help='A list of max num of placing objs')
# ClutterGen Env parameters (training)
parser.add_argument('--max_trials', type=int, default=5) # maximum steps trial for one object per episode
parser.add_argument('--max_traj_history_len', type=int, default=240)
parser.add_argument("--max_stable_steps", type=int, default=40, help="the maximum steps for the env to be stable considering success")
parser.add_argument("--min_continue_stable_steps", type=int, default=20, help="the minimum steps that the object needs to keep stable")
parser.add_argument('--reward_pobj', type=float, default=100., help='Position reward weight')
parser.add_argument('--penalty', type=float, default=0., help='Action penalty weight')
parser.add_argument('--vel_reward_scale', type=float, default=0.005, help='scaler for the velocity reward')
parser.add_argument('--vel_threshold', type=float, default=[0.005, np.pi/360], nargs='+')
parser.add_argument('--acc_threshold', type=float, default=[1., np.pi], nargs='+')
parser.add_argument('--use_bf16', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True, help='default data type')
parser.add_argument('--use_curriculum', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True, help='Use curriculum learning')
parser.add_argument('--patience_iters', type=int, default=5000)
parser.add_argument('--short_memory', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True, help='Short memory for the agent')
parser.add_argument('--open_loop', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True, help='Open loop control')
# I/O hyper parameter
parser.add_argument('--asset_root', type=str, default='assets', help="folder path that stores all urdf files")
parser.add_argument('--object_pool_folder', type=str, default='group_objects/group0_dinning_table', help="folder path that stores all urdf files")
parser.add_argument('--scene_pool_folder', type=str, default='union_scene', help="folder path that stores all urdf files")
parser.add_argument('--debug', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True)
parser.add_argument('--result_dir', type=str, default='train_res', required=False)
parser.add_argument('--wandb', type=lambda x: bool(strtobool(x)), default=True, nargs='?', const=True)
parser.add_argument('--force_name', default=None, type=str)
# Algorithm specific arguments
parser.add_argument('--env_name', default="ClutterGen", help='Wandb config name')
parser.add_argument("--use_lstm", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, help="Toggles whether or not to use LSTM version of meta-controller.")
parser.add_argument("--use_traj_encoder", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, help="Toggles whether or not to use Transformer version of meta-controller.")
parser.add_argument("--use_seq_obs_encoder", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, help="Toggles whether or not to use Transformer version of meta-controller.")
parser.add_argument("--use_tf_traj_encoder", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, help="Toggles whether or not to use Transformer version of meta-controller.")
parser.add_argument("--use_tf_seq_obs_encoder", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, help="Toggles whether or not to use Transformer version of meta-controller.")
parser.add_argument("--use_pc_extractor", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Toggles whether or not to use Transformer version of meta-controller.")
parser.add_argument("--total_timesteps", type=int, default=int(1e9), help="total timesteps of the experiments")
parser.add_argument("--num_envs", type=int, default=10, help="the number of parallel game environments")
parser.add_argument("--num-steps", type=int, default=80, help="the number of steps to run in each environment per policy rollout per object")
parser.add_argument("--pc_batchsize", type=int, default=20, help="the number of steps to run in each environment per policy rollout per object")
parser.add_argument("--use_relu", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Use Relu or tanh.")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Use GAE for advantage computation")
parser.add_argument("--gae-lambda", type=float, default=0.95, help="the lambda for the general advantage estimation")
parser.add_argument("--minibatch-size", type=int, default=1000, help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=10, help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.2, help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--ent-coef", type=float, default=0.01, help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5, help="coefficient of the value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5, help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None, help="the target KL divergence threshold")
parser.add_argument("--deterministic", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, help="Using deterministic policy instead of normal")
parser.add_argument('--eval', type=bool, default=False, help='Evaluates a policy a policy every 10 episode (default: True)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor for reward (default: 0.95)')
parser.add_argument('--tau', type=float, default=0.0005, metavar='G', help='target smoothing coefficient(τ) (default: 0.0005)')
parser.add_argument('--lr', type=float, default=0.0001, metavar='G', help='learning rate (default: 0.00001)') # first 0.0001 then 0.00005
parser.add_argument('--seed', type=int, default=123456, metavar='N', help='random seed (default: 123456)')
parser.add_argument('--hidden_size', type=int, default=256, metavar='N', help='hidden size (default: 256)')
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="if toggled, cuda will be enabled by default")
parser.add_argument('--checkpoint', type=str, default=None)
parser.add_argument('--index_episode', type=str, default='best')
parser.add_argument('--random_policy', type=lambda x: bool(strtobool(x)), default=False, nargs='?', const=True)
parser.add_argument('--sequence_len', type=int, default=5)
parser.add_argument('--reward_episodes', type=int, default=10000)
parser.add_argument('--cpus', type=int, default=[], nargs='+', help="run environments on specified cpus")
parser.add_argument("--torch_deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="if toggled, `torch.backends.cudnn.deterministic=False`")
args = parser.parse_args()
# Training required attributes
args.step_sync = True
args.pc_batchsize = args.pc_batchsize if args.pc_batchsize is not None else args.num_envs
if args.cpus:
print('Running on specific CPUS:', args.cpus)
process = psutil.Process()
process.cpu_affinity(args.cpus)
if args.realtime:
args.rendering = True
# Uniformalize training name
additional = '_Sync_Beta'
additional += f"_{os.path.basename(args.object_pool_folder)}"
if args.specific_scene is not None:
additional += f'_{args.specific_scene}'
###--- suffix for final name ---###
if args.open_loop:
additional += '_OL'
if args.short_memory:
additional += '_SM'
if args.use_traj_encoder:
additional += '_TrajEncoderTF' if args.use_tf_traj_encoder else '_TrajEncoderFC'
if args.use_seq_obs_encoder:
additional += '_SeqObsEncoderTF' if args.use_tf_seq_obs_encoder else '_SeqObsEncoderFC'
if args.use_pc_extractor:
additional += '_PCExtractor'
if args.checkpoint is not None:
additional += '_FineTune'
additional += '_Rand'
if args.random_select_objs_pool: additional += '_ObjPool'
if args.random_select_placing: additional += '_ObjPlace'
if args.random_select_scene_pool: additional += '_ScenePool'
additional += '_Goal'
# if args.use_curriculum: additional += '_Curriculum'
# if args.min_num_placing_objs: additional += f'_minObjNum{args.min_num_placing_objs}'
# if args.train_step: additional += f'_objStep{args.train_step}'
if args.max_num_placing_objs: additional += f'_maxObjNum{args.max_num_placing_objs}'
if args.num_pool_objs: additional += f'_maxPool{args.num_pool_objs}'
if args.num_pool_scenes: additional += f'_maxScene{args.num_pool_scenes}'
if args.max_stable_steps: additional += f'_maxStab{args.max_stable_steps}'
if args.min_continue_stable_steps: additional += f'_contStab{args.min_continue_stable_steps}'
if args.num_episode_to_replace_pool: additional += f'_Epis2Replace{args.num_episode_to_replace_pool}'
additional += '_Weight'
if args.reward_pobj > 0: additional += f'_rewardPobj{args.reward_pobj}'
if args.penalty > 0: additional += f'_ori{args.penalty}'
additional += f'_seq{args.sequence_len}'
additional += f'_step{args.num_steps}'
additional += f'_trial{args.max_trials}'
additional += f'_entropy{args.ent_coef}'
additional += f'_seed{args.seed}'
args.timer = '_' + datetime.datetime.now().strftime("%Y_%m_%d_%H%M%S") # a time name file
print(args.timer)
if args.random_policy: # final_name is in all file names: .csv / .json / trajectory / checkpoints
args.final_name = args.object_pool_name + args.timer + additional.replace('-train', '-random_policy')
elif args.force_name:
args.final_name = args.force_name + args.timer
else: # Normal training
args.final_name = args.object_pool_name + args.timer + additional # only use final name
print(f"Uniform Name: {args.final_name}")
###### Saving Results ######
# create result folder
args.result_dir = os.path.join(args.result_dir, args.object_pool_name)
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir)
# create csv folder
args.csv_dir = os.path.join(args.result_dir, 'CSV')
if args.collect_data and not os.path.exists(args.csv_dir):
os.makedirs(args.csv_dir)
args.result_file_path = os.path.join(args.csv_dir, args.final_name + '.csv')
# create checkpoints folder; not create if use expert action
args.checkpoint_dir = os.path.join(args.result_dir, 'checkpoints', args.final_name)
if args.collect_data and not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
# create trajectory folder
args.trajectory_dir = os.path.join(args.result_dir, 'trajectories', args.final_name)
if args.collect_data and not os.path.exists(args.trajectory_dir):
os.makedirs(args.trajectory_dir)
# create json folder
args.json_dir = os.path.join(args.result_dir, 'Json')
if args.collect_data and not os.path.exists(args.json_dir):
os.makedirs(args.json_dir)
args.json_file = os.path.join(args.json_dir, args.final_name + '.json')
return args
if __name__ == "__main__":
args = parse_args()
if args.collect_data:
with open(args.json_file, 'w') as json_obj:
json.dump(vars(args), json_obj, indent=4)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# Compute the limits for the threadpool
n_cpu_cores = multiprocessing.cpu_count()
n_gpu_used = 1
thread_limits = max(4, int(n_cpu_cores * n_gpu_used / args.num_envs))
# env and scene setup
if args.num_envs > 1:
envs = create_multi_envs(args, 'forkserver')
temp_env = envs.tempENV; tensor_dtype = temp_env.tensor_dtype
elif args.num_envs == 1:
envs = RoboSensaiBullet(args=args)
temp_env = envs; tensor_dtype = temp_env.tensor_dtype
agent = Agent(temp_env).to(device)
if args.checkpoint is not None:
checkpoint_folder = os.path.join(args.result_dir, 'checkpoints', args.checkpoint)
args.checkpoint_path = os.path.join(checkpoint_folder, args.checkpoint + '_' + args.index_episode)
assert os.path.exists(args.checkpoint_path), f"Checkpoint path {args.checkpoint_path} does not exist!"
agent.load_checkpoint(args.checkpoint_path, map_location=device)
# agent = torch.compile(agent) # Speed up the model
agent.set_mode('train') # set to train
optimizer = optim.Adam(agent.parameters(), lr=args.lr, eps=1e-5)
# Assuming you have these variables from your environment
raw_obs_shape_data = [
["Raw Observation Shape", ""],
["Name", "Shape"],
["Raw Observation Shape", temp_env.raw_act_hist_qr_obs_shape],
["QR Region Dim", temp_env.qr_region_dim],
["Action Dim", temp_env.action_dim],
["Traj History Dim", temp_env.traj_hist_dim],
["Scene PC Dim", f"(3, {args.max_num_scene_points})"],
["Obj PC Dim", f"(3, {args.max_num_obj_points})"],
["Sequence Length", f"{args.sequence_len}"]
]
post_obs_shape_data = [
["Post Observation Shape", ""],
["Name", "Shape"],
["Post Observation Shape", temp_env.post_observation_shape],
["Scene Feature Dim", temp_env.scene_ft_dim],
["Obj Feature Dim", temp_env.obj_ft_dim],
["Seq Obs ft Dim", temp_env.seq_info_ft_dim]
]
print(tabulate(raw_obs_shape_data, headers="firstrow", tablefmt="grid"))
print(tabulate(post_obs_shape_data, headers="firstrow", tablefmt="grid"))
# wandb
config = dict(
Name=args.env_name,
algorithm='PPO Continuous',
num_envs=args.num_envs,
max_traj_len=args.max_traj_history_len,
lr=args.lr,
gamma=args.gamma,
alpha=args.ent_coef,
deterministic=args.deterministic,
sequence_len=args.sequence_len,
random_policy=args.random_policy,
)
name = args.final_name
if args.collect_data and args.wandb:
wandb.init(project=args.env_name, entity='jiayinsen', config=config, name=name)
else:
wandb.init(mode="disabled")
# ALGO Logic: Storage setup
print(f"Observation Shape: {temp_env.post_observation_shape}")
if args.use_curriculum:
num_placing_objs_lst = list(range(args.min_num_placing_objs, args.max_num_placing_objs, args.train_step))
if args.max_num_placing_objs not in num_placing_objs_lst: num_placing_objs_lst.append(args.max_num_placing_objs)
else:
num_placing_objs_lst = [args.max_num_placing_objs]
# Global variables that will not be reset
global_update_iter = 0
skipped_update_iter = 0
global_step = 0
global_episodes = 0
# Record episodes, iters, and steps are used to fill the reward buffer
reward_update_iters = 0
reward_steps = 0
reward_episodes = 0
save_mile_stone = 0
meta_data = {"milestone": {}, "training_info": {}}
best_agent_state_dict, best_optimizer_state_dict = None, None
with tpc.threadpool_limits(limits=thread_limits):
for num_placing_objs in num_placing_objs_lst:
torch.cuda.empty_cache()
torch.autograd.set_detect_anomaly(True)
if args.num_envs > 1:
envs.env_method('set_args', 'max_num_placing_objs', num_placing_objs)
envs.env_method('create_info_buffer') # reset the info to record the new training miscs
else:
envs.args.max_num_placing_objs = num_placing_objs
envs.create_info_buffer()
args.num_steps = max(args.num_steps, ((args.max_trials * num_placing_objs) * 4)) # At least 4 * num_envs or 80/avg_steps global_episodes to update
args.batch_size = int(args.num_envs * args.num_steps)
args.num_minibatches = ceil(args.batch_size // args.minibatch_size)
meta_data["training_info"].update({
num_placing_objs: {
"batch_size": args.batch_size,
"num_steps": args.num_steps,
}
})
# Load the best parameters for next curriculum
if best_agent_state_dict is not None:
agent.load_state_dict(best_agent_state_dict)
best_agent_state_dict = None # Consume the best agent state dict
if best_optimizer_state_dict is not None:
optimizer.load_state_dict(best_optimizer_state_dict)
best_optimizer_state_dict = None # Consume the best optimizer state dict
# Storage
seq_obs = torch.zeros((args.num_steps, args.num_envs) + temp_env.raw_act_hist_qr_obs_shape[1:], dtype=tensor_dtype).to(device)
scene_ft_obs = torch.zeros((args.num_steps, args.num_envs) + (temp_env.scene_ft_dim, ), dtype=tensor_dtype).to(device)
obj_ft_obs = torch.zeros((args.num_steps, args.num_envs) + (temp_env.obj_ft_dim, ), dtype=tensor_dtype).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + temp_env.action_shape[1:], dtype=temp_env.tensor_dtype).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs), dtype=temp_env.tensor_dtype).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs), dtype=temp_env.tensor_dtype).to(device)
dones = torch.zeros((args.num_steps, args.num_envs), dtype=temp_env.tensor_dtype).to(device)
values = torch.zeros((args.num_steps, args.num_envs), dtype=temp_env.tensor_dtype).to(device)
# TRY NOT TO MODIFY: start the game
start_time = time.time()
next_seq_obs = torch.Tensor(envs.reset()).to(device)
# Scene and obj feature tensor are keeping updated inplace
next_scene_ft_obs = torch.zeros((args.num_envs, ) + (temp_env.scene_ft_dim, ), dtype=tensor_dtype).to(device)
next_obj_ft_obs = torch.zeros((args.num_envs, ) + (temp_env.obj_ft_dim, ), dtype=tensor_dtype).to(device)
reset_infos = envs.reset_infos if args.num_envs > 1 else [envs.info]
agent.preprocess_pc_update_tensor(next_scene_ft_obs, next_obj_ft_obs, reset_infos, use_mask=True)
next_done = torch.zeros(args.num_envs).to(device)
num_updates = args.total_timesteps // args.batch_size # ?? same as global_episodes? No!! global_episodes = (total_timsteps / batch_size) * num_envs * (avg num_episodes in 128 steps, usually are 20)
# custom record information
episode_rewards = torch.zeros((args.num_envs, ), dtype=temp_env.tensor_dtype).to(device)
episode_pos_rewards = torch.zeros((args.num_envs, ), dtype=temp_env.tensor_dtype).to(device)
episode_ori_rewards = torch.zeros((args.num_envs, ), dtype=temp_env.tensor_dtype).to(device)
episode_act_penalties = torch.zeros((args.num_envs, ), dtype=temp_env.tensor_dtype).to(device)
episode_rewards_box = torch.zeros((args.reward_episodes, ), dtype=temp_env.tensor_dtype).to(device)
episode_success_box = torch.zeros((args.reward_episodes, ), dtype=temp_env.tensor_dtype).to(device)
episode_placed_objs_box = torch.zeros((args.reward_episodes, ), dtype=tensor_dtype).to(device)
iter_success_rate_box = torch.zeros((args.patience_iters, ), dtype=temp_env.tensor_dtype).to(device)
pos_r_box = torch.zeros((args.reward_episodes, ), dtype=temp_env.tensor_dtype).to(device)
ori_r_box = torch.zeros((args.reward_episodes, ), dtype=temp_env.tensor_dtype).to(device)
act_p_box = torch.zeros((args.reward_episodes, ), dtype=temp_env.tensor_dtype).to(device)
best_acc = 0; curri_episodes = 0; curri_steps = 0; curri_update_iters = 0; avg_buffer_reset = True
# training
for update in range(1, num_updates + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr: # schedule learning rate
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.lr
optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += args.num_envs
curri_steps += args.num_envs
seq_obs[step] = next_seq_obs
scene_ft_obs[step] = next_scene_ft_obs
obj_ft_obs[step] = next_obj_ft_obs
dones[step] = next_done
## ----- ALGO LOGIC: action logic ----- ##
## if not expert_action, normal training; Otherwise use only expert actions
# transfer discrete actions to real actions; TODO: Logical problem about next_seq_obs (terminal observation to query step action for the first action)
if args.random_policy:
step_action = torch.rand((args.num_envs, temp_env.action_shape[1]), device=device)
else:
with torch.no_grad():
step_action, logprob, _, value = agent.get_action_and_value([next_seq_obs, next_scene_ft_obs, next_obj_ft_obs])
values[step] = value.flatten()
actions[step] = step_action
logprobs[step] = logprob
# TRY NOT TO MODIFY: execute the game and log data.
next_seq_obs, reward, done, infos = envs.step(step_action)
update_env_ids = agent.preprocess_pc_update_tensor(next_scene_ft_obs, next_obj_ft_obs, infos, use_mask=True)
next_seq_obs, next_done = torch.Tensor(next_seq_obs).to(device), torch.Tensor(done).to(device)
rewards[step] = torch.Tensor(reward).to(device).view(-1) # if reward is not tensor inside
episode_rewards += rewards[step]
terminal_index = next_done == 1
terminal_nums = terminal_index.sum().item()
# Compute the average episode rewards.
if terminal_nums > 0:
global_episodes += terminal_nums
curri_episodes += terminal_nums
update_tensor_buffer(episode_rewards_box, episode_rewards[terminal_index])
update_tensor_buffer(pos_r_box, episode_pos_rewards[terminal_index])
update_tensor_buffer(act_p_box, episode_act_penalties[terminal_index])
terminal_ids = terminal_index.nonzero().flatten()
success_buf = torch.Tensor(combine_envs_float_info2list(infos, 'success', terminal_ids)).to(device)
update_tensor_buffer(episode_success_box, success_buf)
placed_obj_num_buf = torch.Tensor(combine_envs_float_info2list(infos, 'success_placed_obj_num', terminal_ids)).to(device)
update_tensor_buffer(episode_placed_objs_box, placed_obj_num_buf)
# Empty the episode rewards
episode_rewards[terminal_index] = 0.
episode_reward = torch.mean(episode_rewards_box[-curri_episodes:]).item()
episode_success_rate = torch.mean(episode_success_box[-curri_episodes:]).item()
episode_placed_objs = torch.mean(episode_placed_objs_box[-curri_episodes:]).item()
if not args.quiet:
print(f"Global Steps:{global_step}/{args.total_timesteps},"
f"Episode:{global_episodes}, Success Rate:{episode_success_rate:.2f},"
f"Reward:{episode_reward:.4f}")
if args.collect_data:
# Save success rate and placed objects number
meta_data['training_info'].update({
num_placing_objs: {
"global_episodes": global_episodes,
"global_steps": global_step,
"scene_obj_success_num": combine_envs_dict_info2dict(infos, key="scene_obj_success_num"),
"obj_success_rate": combine_envs_dict_info2dict(infos, key="obj_success_rate"),
}
})
if args.wandb:
wandb.log({'global_episodes': global_episodes,
'global_steps': global_step,
'global_iterations': global_update_iter,
'reward/reward_train': episode_reward})
if curri_episodes >= args.reward_episodes: # episode success rate
if avg_buffer_reset: # Only add once per curriculum
reward_episodes += curri_episodes
reward_update_iters += curri_update_iters
reward_steps += curri_steps
avg_buffer_reset = False
wandb.log({'s_episodes': global_episodes - reward_episodes,
's_iterations': global_update_iter - reward_update_iters,
's_steps': global_step - reward_steps,
'reward/success_rate': episode_success_rate,
'reward/num_placed_objs': episode_placed_objs})
if curri_episodes > args.reward_episodes and episode_success_rate > best_acc:
best_acc = episode_success_rate
best_agent_state_dict = deepcopy(agent.state_dict())
best_optimizer_state_dict = deepcopy(optimizer.state_dict())
agent.save_checkpoint(folder_path=args.checkpoint_dir,
folder_name=args.final_name,
suffix='best')
print(f"s_episodes: {global_episodes - reward_episodes} | "
f"Now best accuracy is {best_acc * 100:.3f}% | "
f"Number of placed objects is {episode_placed_objs:.2f}")
# about every args.reward_episodes (because of multi-envs) global_episodes to save one model
if (global_episodes - save_mile_stone) >= args.reward_episodes:
agent.save_checkpoint(folder_path=args.checkpoint_dir,
folder_name=args.final_name,
suffix=str(global_episodes))
save_mile_stone = global_episodes
save_json(meta_data, os.path.join(args.trajectory_dir, "meta_data.json"))
####----- force action to test variance; Skip the training process ----####
if args.random_policy: continue
####----- Curriculum next stage checker ----####
# update_tensor_buffer(iter_success_rate_box, torch.tensor([episode_success_rate], dtype=iter_success_rate_box.dtype, device=iter_success_rate_box.device))
if args.use_curriculum and num_placing_objs < args.max_num_placing_objs:
if best_acc>=0.4:
if args.collect_data:
meta_data["milestone"].update({
num_placing_objs: {
"num_placing_objs": num_placing_objs,
"success_rate": best_acc,
's_episodes': global_episodes - reward_episodes,
's_iterations': global_update_iter - reward_update_iters,
's_steps': global_step - reward_steps,
}
})
save_json(meta_data, os.path.join(args.trajectory_dir, "meta_data.json"))
print(f"Curriculum update: {num_placing_objs} -> {num_placing_objs + args.train_step}")
break
####----- Compute advantage for each state in the markov chain ----####
with torch.no_grad():
next_value = agent.get_value([next_seq_obs, next_scene_ft_obs, next_obj_ft_obs]).reshape(1, -1)
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values
# flatten the batch
b_seq_obs = seq_obs.reshape((-1,) + temp_env.raw_act_hist_qr_obs_shape[1:])
b_scene_ft_obs = scene_ft_obs.reshape((-1,) + (temp_env.scene_ft_dim, ))
b_obj_ft_obs = obj_ft_obs.reshape((-1,) + (temp_env.obj_ft_dim, ))
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + temp_env.action_shape[1:])
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []
# Save previous parameters
if args.target_kl is not None:
agent_params_store = copy.deepcopy(agent.state_dict())
optim_params_store = copy.deepcopy(optimizer.state_dict())
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
_, newlogprob, entropy, newvalue = agent.get_action_and_value([b_seq_obs[mb_inds], b_scene_ft_obs[mb_inds], b_obj_ft_obs[mb_inds]], b_actions[mb_inds])
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
loss.backward()
# Clip grad norm seperately to avoid large value gradients to affect the policy gradients
nn.utils.clip_grad_norm_(agent.critic.parameters(), args.max_grad_norm)
nn.utils.clip_grad_norm_(agent.actor.parameters(), args.max_grad_norm)
optimizer.step()
if args.target_kl is not None and approx_kl > args.target_kl:
agent.load_state_dict(agent_params_store)
optimizer.load_state_dict(optim_params_store)
break
if args.target_kl is not None and approx_kl > args.target_kl:
skipped_update_iter += 1
if args.collect_data and args.wandb:
wandb.log({
'debug/skipped_update_iter': skipped_update_iter,
'debug/skipped_kl': approx_kl.item(),
'debug/skipped_adv': mb_advantages.mean().item()
})
continue # Skip the wandb log since the update is not successful
global_update_iter += 1
curri_update_iters += 1
# To float32 is because it does support for bfloat16 to numpy
y_pred, y_true = b_values.to(torch.float32).cpu().numpy(), b_returns.to(torch.float32).cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
if args.collect_data and args.wandb:
concentration_alpha = agent.probs.concentration0.mean(dim=0)
concentration_beta = agent.probs.concentration1.mean(dim=0)
con_a_x, con_a_y, con_a_z, con_a_Rz = \
concentration_alpha[0].item(), concentration_alpha[1].item(), concentration_alpha[2].item(), concentration_alpha[3].item()
con_b_x, con_b_y, con_b_z, con_b_Rz = \
concentration_beta[0].item(), concentration_beta[1].item(), concentration_beta[2].item(), concentration_beta[3].item()
entropy_log = agent.prob_entropy.mean(dim=0)
entropy_x, entropy_y, entropy_z, entropy_Rz = \
entropy_log[0].item(), entropy_log[1].item(), entropy_log[2].item(), entropy_log[3].item()
wandb.log({
'steps': global_step,
'iterations': global_update_iter,
'train/learning_rate': optimizer.param_groups[0]["lr"],
'train/critic_loss': v_loss.item(),
'train/policy_loss': pg_loss.item(),
'train/approx_kl': approx_kl.item(),
'train/advantages': mb_advantages.mean().item(),
'train/explained_variance': explained_var,
'entropy/entropy': entropy_loss.item(),
'entropy/entropy_x': entropy_x,
'entropy/entropy_y': entropy_y,
'entropy/entropy_z': entropy_z,
'entropy/entropy_Rz': entropy_Rz,
'concentration_a/alpha_x': con_a_x,
'concentration_a/alpha_y': con_a_y,
'concentration_a/alpha_z': con_a_z,
'concentration_a/alpha_Rz': con_a_Rz,
'concentration_b/beta_x': con_b_x,
'concentration_b/beta_y': con_b_y,
'concentration_b/beta_z': con_b_z,
'concentration_b/beta_Rz': con_b_Rz,
})
if not args.quiet:
print("Running Time:", convert_time(time.time() - start_time), "Global Steps", global_step)
if args.collect_data and not args.random_policy: # not random policy or expert action
agent.save_checkpoint(folder_path=args.checkpoint_dir, folder_name=args.final_name, suffix='last') # last
print('Process Over here')
envs.close()
wandb.finish()