Skip to content

Clean, Parse, Harmonize, Match, and Geocode Messy Real-World Addresses

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

geomarker-io/addr

Repository files navigation

addr

CRAN status R-CMD-check Lifecycle: stable r-universe

Addresses that were not validated at the time of collection are often heterogenously formatted, making them difficult to directly compare. The goal of addr is to clean, parse, standardize, and match messy, real-world addresses in R to use for data linkages.

Installation

Install the latest stable release of addr from R-universe with:

install.packages("addr", repos = c("https://geomarker-io.r-universe.dev", "https://cloud.r-project.org"))

Or, install the development version of addr from GitHub with:

# install.packages("pak")
pak::pak("cole-brokamp/addr")

Installing addr from GitHub requires a working Rust toolchain; install one using rustup.

Using

addr vectors in R

The addr package provides the addr R object, which stores standardized address tags, but acts like a usual vector in R:

library(addr)
addr(c("3333 Burnet Ave Cincinnati OH 45229", "202 Riva Ridge Ct Cincinnati OH 45140"))
#> 3333 Burnet Avenue Cincinnati OH 45229 202 Riva Ridge Court Cincinnati OH 45140

Under the hood, an addr vector keeps a record of the tagged and standardized address components so that they can be used with other functions. To inspect or use them directly:

addr(c("3333 Burnet Ave Cincinnati OH 45229", "202 Riva Ridge Ct Cincinnati OH 45140")) |>
  as.data.frame()
#>   street_number street_name street_type       city state zip_code
#> 1          3333      burnet      avenue cincinnati    oh    45229
#> 2           202  riva ridge       court cincinnati    oh    45140

or

addr(c("3333 Burnet Ave Cincinnati OH 45229", "202 Riva Ridge Ct Cincinnati OH 45140")) |>
  as.character()
#> [1] "3333 Burnet Avenue Cincinnati OH 45229"  
#> [2] "202 Riva Ridge Court Cincinnati OH 45140"

addr matching

List all of the potentially matching addrs in a reference set of addrs with addr_match(). The code below matches input addresses to the reference set of all addresses in Hamilton County, OH included in the package:

addr(c("3333 Burnet Ave Cincinnati OH 45229", 
    "5130 RAPID RUN RD CINCINNATI OHIO 45238",
    "5131 RAPID RUN RD CINCINNATI OHIO 45238"
)) |>
  addr_match(cagis_addr()$cagis_addr)
#> 3333 Burnet Avenue Cincinnati OH 45229 5130 Rapid Run Road Delhi Township OH 45238 NA NA NA NA NA NA

Use the matched addr vector to merge in address-specific data in the included cagis_addr object.

addr(c("3333 Burnet Ave Cincinnati OH 45229", "5130 RAPID RUN RD CINCINNATI OHIO 45238")) |>
  addr_match(cagis_addr()$cagis_addr) |>
  tibble::enframe(name = "input_addr", value = "ca") |>
  dplyr::left_join(cagis_addr(), by = c("ca" = "cagis_addr"))
#> # A tibble: 2 × 3
#>   input_addr                                          ca    cagis_addr_data
#>        <int>                                      <addr> <list<tibble[,6]>>
#> 1          1      3333 Burnet Avenue Cincinnati OH 45229            [1 × 6]
#> 2          2 5130 Rapid Run Road Delhi Township OH 45238            [1 × 6]

If exact matching fails, use matching to TIGER street range files from the US census:

addr(c("3333 Burnet Ave Cincinnati OH 45229", "5130 RAPID RUN RD CINCINNATI OHIO 45238")) |>
  addr_match_tiger_street_ranges()
#> $`3333 Burnet Avenue Cincinnati OH 45229`
#> # A tibble: 2 × 4
#>   TLID      s2_geography                                            from    to
#>   <chr>     <s2_geography>                                         <dbl> <dbl>
#> 1 103925697 LINESTRING (-84.500403 39.14089, -84.500289 39.141892)  3301  3399
#> 2 103925699 LINESTRING (-84.500525 39.139737, -84.500403 39.14089)  3247  3398
#> 
#> $`5130 Rapid Run Road Cincinnati OHIO 45238`
#> # A tibble: 1 × 4
#>   TLID      s2_geography                                              from    to
#>   <chr>     <s2_geography>                                           <dbl> <dbl>
#> 1 650346231 LINESTRING (-84.608444 39.110496, -84.6087 39.110523, -…  5094  5199

Because the addresses are possibly located on more than one street range geography, use the summarize argument to return the centroid of each set of matched street ranges and then add TIGER/Line census block group identifers via geospatial intersection:

addr(c("3333 Burnet Ave Cincinnati OH 45229", "5130 RAPID RUN RD CINCINNATI OHIO 45238")) |>
  addr_match_tiger_street_ranges(county = "39061", summarize = "centroid") |>
  dplyr::bind_rows() |>
  dplyr::mutate(census_bg_id = s2_join_tiger_bg(s2::as_s2_cell(s2_geography)))
#> # A tibble: 2 × 5
#>   TLID                s2_geography                    from    to census_bg_id
#>   <chr>               <s2_geography>                 <dbl> <dbl> <chr>       
#> 1 103925697-103925699 POINT (-84.5004091 39.1408146)  3247  3399 390610270002
#> 2 650346231           POINT (-84.6103702 39.1110311)  5094  5199 390610214011

The above process is conducted, with default matching arguments, in the function addr_match_geocode, which requires a vector of reference s2 cell locations: As of now, this process only works with the cagis_s2 available as below and for matching within Hamilton County, OH (36061) using 2022 TIGER street range files

# select one s2 cell at random from addresses with more than one parcel identifier and coordinates
cagis_s2 <-
   cagis_addr()$cagis_addr_data |>
   purrr::modify_if(\(.) length(.) > 0 && nrow(.) > 1, dplyr::slice_sample, n = 1) |>
   purrr::map_vec(purrr::pluck, "cagis_s2", .default = NA, .ptype = s2::s2_cell())
   
addr_match_geocode(x = voter_addresses()[1040:1100], 
                   ref_addr = cagis_addr()$cagis_addr,
                   ref_s2 = cagis_s2,
                   county = "39061",
                   year = "2022")
#> # A tibble: 61 × 3
#>                                          addr s2               match_method
#>                                        <addr> <s2cell>         <fct>       
#>  1     9822 Tollgate Lane Cincinnati OH 45242 8840538796e0aca3 ref_addr    
#>  2  3840 Applegate Avenue Cincinnati OH 45211 8841ca6358e35e7b ref_addr    
#>  3     2819 Hocking Drive Cincinnati OH 45233 8841cb8ea9f6c543 ref_addr    
#>  4  8311 Wetherfield Lane Cincinnati OH 45236 8840536907b7ccc5 ref_addr    
#>  5          529 13th E St Cincinnati OH 45202 NA               none        
#>  6     996 Wittshire Lane Cincinnati OH 45255 8841a91704d8f5a5 tiger_range 
#>  7 5110 Herringbone Drive Cincinnati OH 45227 8841ad10999e2617 ref_addr    
#>  8    7081 Jeannie Avenue Cincinnati OH 45230 8841aed03759a5c5 ref_addr    
#>  9 6924 Miami Bluff Drive Cincinnati OH 45227 8841ac605740b499 ref_addr    
#> 10    433 Mcdowell Street Cincinnati OH 45226 8841adf7a4bb9c83 ref_addr    
#> # ℹ 51 more rows

About

Clean, Parse, Harmonize, Match, and Geocode Messy Real-World Addresses

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published

Languages