Skip to content

Commit

Permalink
take out attention_type; add in llama_set_embeddings
Browse files Browse the repository at this point in the history
  • Loading branch information
iamlemec committed Jun 6, 2024
1 parent 56d9aee commit 8464ee3
Show file tree
Hide file tree
Showing 5 changed files with 19 additions and 41 deletions.
14 changes: 0 additions & 14 deletions common/common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -532,17 +532,6 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
else { invalid_param = true; }
return true;
}
if (arg == "--attention") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::string value(argv[i]);
/**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NONCAUSAL; }
else { invalid_param = true; }
return true;
}
if (arg == "--defrag-thold" || arg == "-dt") {
if (++i >= argc) {
invalid_param = true;
Expand Down Expand Up @@ -1457,8 +1446,6 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --pooling {none,mean,cls,last}\n");
printf(" pooling type for embeddings, use model default if unspecified\n");
printf(" --attn-type {causal,non-causal}\n");
printf(" attention type for generation, use model default if unspecified\n");
printf(" -dt N, --defrag-thold N\n");
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
Expand Down Expand Up @@ -2056,7 +2043,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type;
cparams.attention_type = params.attention_type;
cparams.defrag_thold = params.defrag_thold;
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
Expand Down
1 change: 0 additions & 1 deletion common/common.h
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,6 @@ struct gpt_params {

enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type

// // sampling parameters
struct llama_sampling_params sparams;
Expand Down
22 changes: 10 additions & 12 deletions examples/gritlm/gritlm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,8 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve

// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_set_embeddings(ctx, true);
llama_set_causal_attn(ctx, false);

// run model
llama_decode(ctx, batch);
Expand Down Expand Up @@ -97,6 +99,9 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo
llama_token eos_token = llama_token_eos(mdl);

llama_kv_cache_clear(ctx);
llama_set_embeddings(ctx, false);
llama_set_causal_attn(ctx, true);

llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);

std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
Expand Down Expand Up @@ -163,13 +168,7 @@ int main(int argc, char * argv[]) {
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);

// create generation context
llama_context * ctx_gen = llama_new_context_with_model(mdl, cparams);

// create embedding context
cparams.embeddings = true;
cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
cparams.attention_type = LLAMA_ATTENTION_TYPE_NONCAUSAL;
llama_context * ctx_emb = llama_new_context_with_model(mdl, cparams);
llama_context * ctx = llama_new_context_with_model(mdl, cparams);

// ### Embedding/Representation ###
// samples taken from: https://github.com/ContextualAI/gritlm#basic
Expand All @@ -187,8 +186,8 @@ int main(int argc, char * argv[]) {
};

// No need to add instruction for retrieval documents
const std::vector<std::vector<float>> d_rep = encode(ctx_emb, documents, gritlm_instruction(""));
const std::vector<std::vector<float>> q_rep = encode(ctx_emb, queries, gritlm_instruction(instruction));
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));

const int n_embd = llama_n_embd(mdl);

Expand All @@ -207,11 +206,10 @@ int main(int argc, char * argv[]) {
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
{
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
std::string response = generate(ctx_gen, prompt, true);
std::string response = generate(ctx, prompt, true);
}

llama_free(ctx_gen);
llama_free(ctx_emb);
llama_free(ctx);
llama_free_model(mdl);
llama_backend_free();

Expand Down
12 changes: 5 additions & 7 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15277,7 +15277,6 @@ struct llama_context_params llama_context_default_params() {
/*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
/*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
/*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
/*.rope_freq_base =*/ 0.0f,
/*.rope_freq_scale =*/ 0.0f,
/*.yarn_ext_factor =*/ -1.0f,
Expand Down Expand Up @@ -15514,12 +15513,7 @@ struct llama_context * llama_new_context_with_model(
}

cparams.yarn_attn_factor *= hparams.rope_attn_factor;

if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
cparams.causal_attn = hparams.causal_attn;
} else {
cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
}
cparams.causal_attn = hparams.causal_attn;

if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
Expand Down Expand Up @@ -17232,6 +17226,10 @@ void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)
ctx->abort_callback_data = abort_callback_data;
}

void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
ctx->cparams.embeddings = embeddings;
}

void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.causal_attn = causal_attn;
}
Expand Down
11 changes: 4 additions & 7 deletions llama.h
Original file line number Diff line number Diff line change
Expand Up @@ -161,12 +161,6 @@ extern "C" {
LLAMA_POOLING_TYPE_LAST = 3,
};

enum llama_attention_type {
LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
LLAMA_ATTENTION_TYPE_CAUSAL = 0,
LLAMA_ATTENTION_TYPE_NONCAUSAL = 1,
};

enum llama_split_mode {
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
Expand Down Expand Up @@ -282,7 +276,6 @@ extern "C" {

enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
enum llama_attention_type attention_type; // causal, non-causal, or unspecified

// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model
Expand Down Expand Up @@ -766,6 +759,10 @@ extern "C" {
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);

// Set whether the model is in embeddings model or not
// If true, embeddings will be returned but logits will not
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);

// Set whether to use causal attention or not
// If set to true, the model will only attend to the past tokens
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
Expand Down

0 comments on commit 8464ee3

Please sign in to comment.