-
Notifications
You must be signed in to change notification settings - Fork 10.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
build(python): Package scripts with pip-0517 compliance
- Loading branch information
Showing
9 changed files
with
1,661 additions
and
35 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
#!/usr/bin/env python3 | ||
from __future__ import annotations | ||
|
||
import json | ||
import os | ||
import struct | ||
import sys | ||
from pathlib import Path | ||
from typing import Any, BinaryIO, Sequence | ||
|
||
import numpy as np | ||
import torch | ||
|
||
if 'NO_LOCAL_GGUF' not in os.environ: | ||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) | ||
import gguf | ||
|
||
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} | ||
|
||
|
||
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None: | ||
fout.write(b"ggla"[::-1]) # magic (ggml lora) | ||
fout.write(struct.pack("i", 1)) # file version | ||
fout.write(struct.pack("i", params["r"])) | ||
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int | ||
# but some models ship a float value instead | ||
# let's convert to int, but fail if lossless conversion is not possible | ||
assert ( | ||
int(params["lora_alpha"]) == params["lora_alpha"] | ||
), "cannot convert float to int losslessly" | ||
fout.write(struct.pack("i", int(params["lora_alpha"]))) | ||
|
||
|
||
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None: | ||
sname = name.encode("utf-8") | ||
fout.write( | ||
struct.pack( | ||
"iii", | ||
len(shape), | ||
len(sname), | ||
NUMPY_TYPE_TO_FTYPE[data_type.name], | ||
) | ||
) | ||
fout.write(struct.pack("i" * len(shape), *shape[::-1])) | ||
fout.write(sname) | ||
fout.seek((fout.tell() + 31) & -32) | ||
|
||
|
||
if __name__ == '__main__': | ||
if len(sys.argv) < 2: | ||
print(f"Usage: python {sys.argv[0]} <path> [arch]") | ||
print( | ||
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'" | ||
) | ||
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") | ||
sys.exit(1) | ||
|
||
input_json = os.path.join(sys.argv[1], "adapter_config.json") | ||
input_model = os.path.join(sys.argv[1], "adapter_model.bin") | ||
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") | ||
|
||
if os.path.exists(input_model): | ||
model = torch.load(input_model, map_location="cpu") | ||
else: | ||
input_model = os.path.join(sys.argv[1], "adapter_model.safetensors") | ||
# lazy import load_file only if lora is in safetensors format. | ||
from safetensors.torch import load_file | ||
model = load_file(input_model, device="cpu") | ||
|
||
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" | ||
|
||
if arch_name not in gguf.MODEL_ARCH_NAMES.values(): | ||
print(f"Error: unsupported architecture {arch_name}") | ||
sys.exit(1) | ||
|
||
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)] | ||
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone | ||
|
||
with open(input_json, "r") as f: | ||
params = json.load(f) | ||
|
||
if params["peft_type"] != "LORA": | ||
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") | ||
sys.exit(1) | ||
|
||
if params["fan_in_fan_out"] is True: | ||
print("Error: param fan_in_fan_out is not supported") | ||
sys.exit(1) | ||
|
||
if params["bias"] is not None and params["bias"] != "none": | ||
print("Error: param bias is not supported") | ||
sys.exit(1) | ||
|
||
# TODO: these seem to be layers that have been trained but without lora. | ||
# doesn't seem widely used but eventually should be supported | ||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: | ||
print("Error: param modules_to_save is not supported") | ||
sys.exit(1) | ||
|
||
with open(output_path, "wb") as fout: | ||
fout.truncate() | ||
|
||
write_file_header(fout, params) | ||
for k, v in model.items(): | ||
orig_k = k | ||
if k.endswith(".default.weight"): | ||
k = k.replace(".default.weight", ".weight") | ||
if k in ["llama_proj.weight", "llama_proj.bias"]: | ||
continue | ||
if k.endswith("lora_A.weight"): | ||
if v.dtype != torch.float16 and v.dtype != torch.float32: | ||
v = v.float() | ||
v = v.T | ||
else: | ||
v = v.float() | ||
|
||
t = v.detach().numpy() | ||
|
||
prefix = "base_model.model." | ||
if k.startswith(prefix): | ||
k = k[len(prefix) :] | ||
|
||
lora_suffixes = (".lora_A.weight", ".lora_B.weight") | ||
if k.endswith(lora_suffixes): | ||
suffix = k[-len(lora_suffixes[0]):] | ||
k = k[: -len(lora_suffixes[0])] | ||
else: | ||
print(f"Error: unrecognized tensor name {orig_k}") | ||
sys.exit(1) | ||
|
||
tname = name_map.get_name(k) | ||
if tname is None: | ||
print(f"Error: could not map tensor name {orig_k}") | ||
print(" Note: the arch parameter must be specified if the model is not llama") | ||
sys.exit(1) | ||
|
||
if suffix == ".lora_A.weight": | ||
tname += ".weight.loraA" | ||
elif suffix == ".lora_B.weight": | ||
tname += ".weight.loraB" | ||
else: | ||
assert False | ||
|
||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") | ||
write_tensor_header(fout, tname, t.shape, t.dtype) | ||
t.tofile(fout) | ||
|
||
print(f"Converted {input_json} and {input_model} to {output_path}") | ||
|
Oops, something went wrong.