Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

server : (embeddings) using same format for "input" and "content" #10872

Merged
merged 4 commits into from
Dec 18, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 14 additions & 6 deletions examples/server/server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3651,25 +3651,33 @@ int main(int argc, char ** argv) {
const json body = json::parse(req.body);
bool oaicompat = false;

// an input prompt can be a string or a list of tokens (integer)
// for the shape of input/content, see tokenize_input_prompts()
json prompt;
if (body.count("input") != 0) {
if (body.contains("input")) {
oaicompat = true;
prompt = body.at("input");
} else if (body.count("content") != 0) {
// with "content", we only support single prompt
prompt = std::vector<std::string>{body.at("content")};
} else if (body.contains("content")) {
oaicompat = false;
prompt = body.at("content");
} else {
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
return;
}

std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@ggerganov I changed the add_special to true here, because I remember that embedding models need BOS token. Not sure why it's removed at some point, maybe due to human error (my error 👀 ?) during recent refactoring.

for (const auto & tokens : tokenized_prompts) {
// this check is necessary for models that do not add BOS token to the input
if (tokens.empty()) {
res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
return;
}
}

// create and queue the task
json responses = json::array();
bool error = false;
{
std::vector<server_task> tasks;
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, /* add_special */ false, true);
for (size_t i = 0; i < tokenized_prompts.size(); i++) {
server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
task.id = ctx_server.queue_tasks.get_new_id();
Expand Down
29 changes: 29 additions & 0 deletions examples/server/tests/unit/test_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,35 @@ def test_embedding_multiple():
assert len(d['embedding']) > 1


@pytest.mark.parametrize(
"content,is_multi_prompt",
[
# single prompt
("string", False),
([12, 34, 56], False),
([12, 34, "string", 56, 78], False),
# multiple prompts
(["string1", "string2"], True),
(["string1", [12, 34, 56]], True),
([[12, 34, 56], [12, 34, 56]], True),
([[12, 34, 56], [12, "string", 34, 56]], True),
]
)
def test_embedding_mixed_input(content, is_multi_prompt: bool):
global server
server.start()
res = server.make_request("POST", "/embeddings", data={"content": content})
assert res.status_code == 200
if is_multi_prompt:
assert len(res.body) == len(content)
for d in res.body:
assert 'embedding' in d
assert len(d['embedding']) > 1
else:
assert 'embedding' in res.body
assert len(res.body['embedding']) > 1


def test_embedding_openai_library_single():
global server
server.start()
Expand Down
1 change: 1 addition & 0 deletions examples/server/utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,7 @@ static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_
* and multiple prompts (multi-tasks):
* - "prompt": ["string1", "string2"]
* - "prompt": ["string1", [12, 34, 56]]
* - "prompt": [[12, 34, 56], [78, 90, 12]]
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
*/
static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
Expand Down
Loading