Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

server: continuous performance monitoring and PR comment #6283

Merged
merged 13 commits into from
Mar 27, 2024
279 changes: 279 additions & 0 deletions .github/workflows/bench.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,279 @@
# Benchmark
name: Benchmark

on:
workflow_dispatch:
inputs:
gpu-series:
description: 'Azure GPU series to run with'
required: true
type: choice
options:
- Standard_NC4as_T4_v3
- Standard_NC24ads_A100_v4
- Standard_NC80adis_H100_v5
sha:
description: 'Commit SHA1 to build'
required: false
type: string
duration:
description: 'Duration of the bench'
type: string
default: 10m

push:
branches:
- master
paths: ['.github/workflows/bench.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/bench/**.*']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/bench.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/bench/**.*']
Comment on lines +27 to +30
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How about excluding examples/ subdirectories except for examples/server? It could help reduce unneeded runs

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's do it in another PR if you dont' mind/

schedule:
- cron: '04 2 * * *'
Comment on lines +31 to +32
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we need this scheduled run? If so, how will we view the results?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

At the moment, it will do the steps not related to PR: commit status and upload artefact. I will later process all commit checks statuses to show performance improvements day after day.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That sounds awesome 👍 It would also be cool if we pile up the daily performance results somewhere and visualize the performance improvement.
Also, if scheduled run's role becomes to differ from PR-based runs too much, consider making it a separate workflow.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes I want to do something like, probably stored on GH pages.

https://home.apache.org/~mikemccand/lucenebench/indexing.html

But it will require a little time and logic to reprocess previous commits, taking into account parameters have changed :/

Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Don't think we should put much effort in reprocessing previous commits. Better to focus just on the new versions from now on


concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true

jobs:
bench-server-baseline:
runs-on: Standard_NC4as_T4_v3
env:
RUNNER_LABEL: Standard_NC4as_T4_v3 # FIXME Do not find a way to not duplicate it
N_USERS: 8
DURATION: 10m
if: ${{ github.event.inputs.gpu-series == 'Standard_NC4as_T4_v3' || github.event.schedule || github.event.pull_request || github.event.push.ref == 'refs/heads/master' }}
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}

- name: Install python env
id: pipenv
run: |
cd examples/server/bench
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

- name: Prometheus
id: install_prometheus
run: |
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
tar xzf prometheus*.tar.gz --strip-components=1
./prometheus --config.file=examples/server/bench/prometheus.yml &
while ! nc -z localhost 9090; do
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe we should add a timeout here, just in case something goes wrong

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The workflow will be killed after a while. If you don't mind it can be added later on

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah it's not very important, but I still prefer not to rely on CI timeout because it can be long (usually minutes or hours), we should add a timeout of 10 seconds here for example.

sleep 0.1
done

- name: Install k6
id: k6_installation
run: |
cd examples/server/bench
wget --quiet https://github.com/grafana/k6/releases/download/v0.49.0/k6-v0.49.0-linux-amd64.tar.gz
tar xzf k6*.tar.gz --strip-components=1

- name: Build
id: cmake_build
run: |
set -eux
mkdir build
cd build
cmake .. \
-DLLAMA_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DLLAMA_CUBLAS=ON \
-DCUDAToolkit_ROOT=/usr/local/cuda \
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
-DCMAKE_CUDA_ARCHITECTURES=75 \
-DLLAMA_FATAL_WARNINGS=OFF \
-DLLAMA_ALL_WARNINGS=OFF \
-DCMAKE_BUILD_TYPE=Release;
cmake --build . --config Release -j $(nproc) --target server

- name: Download the dataset
id: download_dataset
run: |
cd examples/server/bench
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

- name: Server bench
id: server_bench
run: |
set -eux

cd examples/server/bench
source venv/bin/activate
BENCH_K6_BIN_PATH=./k6 python bench.py \
--runner-label ${{ env.RUNNER_LABEL }} \
--name ${{ github.job }} \
--branch ${{ github.head_ref || github.ref_name }} \
--commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
--scenario script.js \
--duration ${{ github.event.inputs.duration || env.DURATION }} \
ngxson marked this conversation as resolved.
Show resolved Hide resolved
--hf-repo ggml-org/models \
--hf-file phi-2/ggml-model-q4_0.gguf \
--model-path-prefix /models \
--parallel ${{ env.N_USERS }} \
-ngl 33 \
--batch-size 2048 \
--ubatch-size 256 \
--ctx-size 16384 \
--n-prompts 1000 \
--max-prompt-tokens 1024 \
--max-tokens 2048

cat results.github.env >> $GITHUB_ENV

# Remove dataset as we do not want it in the artefact
rm ShareGPT_V3_unfiltered_cleaned_split.json

- uses: actions/upload-artifact@v4
with:
name: benchmark-results
compression-level: 9
path: |
examples/server/bench/*.jpg
examples/server/bench/*.json
examples/server/bench/*.log

- name: Commit status
uses: Sibz/github-status-action@v1
with:
authToken: ${{secrets.GITHUB_TOKEN}}
sha: ${{ inputs.sha || github.event.pull_request.head.sha || github.sha }}
context: bench-server-baseline
description: |
${{ env.BENCH_RESULTS }}
state: 'success'

- name: Upload benchmark images
uses: devicons/[email protected]
continue-on-error: true # Important as it looks unstable: 503
id: imgur_step
with:
client_id: ${{secrets.IMGUR_CLIENT_ID}}
path: |
examples/server/bench/prompt_tokens_seconds.jpg
examples/server/bench/predicted_tokens_seconds.jpg
examples/server/bench/kv_cache_usage_ratio.jpg
examples/server/bench/requests_processing.jpg

- name: Extract mermaid
id: set_mermaid
run: |
set -eux

cd examples/server/bench
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV

PREDICTED_TOKENS_SECONDS=$(cat predicted_tokens_seconds.mermaid)
echo "PREDICTED_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PREDICTED_TOKENS_SECONDS" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV

KV_CACHE_USAGE_RATIO=$(cat kv_cache_usage_ratio.mermaid)
echo "KV_CACHE_USAGE_RATIO<<EOF" >> $GITHUB_ENV
echo "$KV_CACHE_USAGE_RATIO" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV

REQUESTS_PROCESSING=$(cat requests_processing.mermaid)
echo "REQUESTS_PROCESSING<<EOF" >> $GITHUB_ENV
echo "$REQUESTS_PROCESSING" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV

- name: Extract image url
id: extract_image_url
continue-on-error: true
run: |
set -eux

echo "IMAGE_O=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[0] }}" >> $GITHUB_ENV
echo "IMAGE_1=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[1] }}" >> $GITHUB_ENV
echo "IMAGE_2=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[2] }}" >> $GITHUB_ENV
echo "IMAGE_3=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[3] }}" >> $GITHUB_ENV

- name: Comment PR
uses: mshick/add-pr-comment@v2
id: comment_pr
if: ${{ github.event.pull_request != '' }}
with:
message-id: bench-${{ github.job }}-${{ env.RUNNER_LABEL }}
message: |
📈 **llama.cpp server** for _${{ github.job }}_ on _${{ env.RUNNER_LABEL }}_: **${{ env.BENCH_ITERATIONS}} iterations** 🚀

- Concurrent users: ${{ env.N_USERS }}, duration: ${{ github.event.inputs.duration || env.DURATION }}
- HTTP request : avg=${{ env.HTTP_REQ_DURATION_AVG }}ms p(90)=${{ env.HTTP_REQ_DURATION_P_90_ }}ms passes=${{ env.HTTP_REQ_FAILED_FAILS }}reqs fails=${{ env.HTTP_REQ_FAILED_PASSES }}reqs Finish reason: stop=${{ env.LLAMACPP_COMPLETIONS_STOP_RATE_PASSES }}reqs truncated=${{ env.LLAMACPP_COMPLETIONS_TRUNCATED_RATE_PASSES }}reqs
- Prompt processing (pp): avg=${{ env.LLAMACPP_PROMPT_TOKENS_AVG }}tk/s p(90)=${{ env.LLAMACPP_PROMPT_TOKENS_P_90_ }}tk/s **total=${{ env.LLAMACPP_PROMPT_TOKENS_TOTAL_COUNTER_RATE }}tk/s**
- Token generation (tg): avg=${{ env.LLAMACPP_TOKENS_SECOND_AVG }}tk/s p(90)=${{ env.LLAMACPP_TOKENS_SECOND_P_90_ }}tk/s **total=${{ env.LLAMACPP_COMPLETION_TOKENS_TOTAL_COUNTER_RATE }}tk/s**
- ${{ env.BENCH_GRAPH_XLABEL }}

<details>

<summary>Time series</summary>

<p align="center">

<img width="100%" height="100%" src="${{ env.IMAGE_O }}" alt="prompt_tokens_seconds" />

<details>

<summary>More</summary>

```mermaid
${{ env.PROMPT_TOKENS_SECONDS }}
```

</details>

<img width="100%" height="100%" src="${{ env.IMAGE_1 }}" alt="predicted_tokens_seconds"/>

<details>
<summary>More</summary>

```mermaid
${{ env.PREDICTED_TOKENS_SECONDS }}
```

</details>

</p>

<details>

<summary>Details</summary>

<p align="center">

<img width="100%" height="100%" src="${{ env.IMAGE_2 }}" alt="kv_cache_usage_ratio" />

<details>
<summary>More</summary>

```mermaid
${{ env.KV_CACHE_USAGE_RATIO }}
```

</details>

<img width="100%" height="100%" src="${{ env.IMAGE_3 }}" alt="requests_processing"/>

<details>
<summary>More</summary>

```mermaid
${{ env.REQUESTS_PROCESSING }}
```

</details>

</p>
</details>
</details>
Loading
Loading