Skip to content

convert : improve model arch handling #13122

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 47 additions & 40 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
from hashlib import sha256
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
from itertools import chain
from transformers import AutoConfig

import math
import numpy as np
Expand Down Expand Up @@ -66,8 +67,6 @@ class ModelBase:
part_names: list[str]
is_safetensors: bool
hparams: dict[str, Any]
block_count: int
tensor_map: gguf.TensorNameMap
tensor_names: set[str] | None
gguf_writer: gguf.GGUFWriter
model_name: str | None
Expand All @@ -78,6 +77,10 @@ class ModelBase:
# subclasses should define this!
model_arch: gguf.MODEL_ARCH

# subclasses should initialize this!
block_count: int
tensor_map: gguf.TensorNameMap

def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
Expand Down Expand Up @@ -113,8 +116,6 @@ def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
if not self.is_safetensors:
self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
self.tensor_names = None
self.metadata_override = metadata_override
self.model_name = model_name
Expand Down Expand Up @@ -417,15 +418,13 @@ def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]

@staticmethod
def load_hparams(dir_model: Path):
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
architectures = hparams.get("architectures")
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
if architectures is not None:
# preserve "architectures" from root level config
hparams["architectures"] = architectures
return hparams
try:
return AutoConfig.from_pretrained(dir_model).to_dict()
except Exception as e:
logger.warning(f"Failed to load model config from {dir_model}: {e}")
logger.warning("Trying to load config.json instead")
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)

@classmethod
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
Expand Down Expand Up @@ -454,6 +453,16 @@ def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type


class TextModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

if "text_config" in self.hparams:
# move the text_config to the root level
self.hparams = {**self.hparams, **self.hparams["text_config"]}

self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)

@classmethod
def __init_subclass__(cls):
# can't use an abstract property, because overriding it without type errors
Expand Down Expand Up @@ -1077,9 +1086,9 @@ def __init__(self, *args, **kwargs):
if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")

# small hack to correct the number of layers
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, 128)
self.n_embd_text = self.find_hparam(["hidden_size", "n_embd"])
# get n_embd of the text model
text_config = {**self.hparams, **self.hparams["text_config"]}
self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
assert self.n_embd_text > 0, "n_embd not found in hparams"

if "vision_config" not in self.hparams:
Expand All @@ -1088,6 +1097,9 @@ def __init__(self, *args, **kwargs):
self.global_config = self.hparams
self.hparams = self.hparams["vision_config"]

self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)

# load preprocessor config
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
Expand Down Expand Up @@ -1726,23 +1738,12 @@ def prepare_tensors(self):
"LlamaForCausalLM",
"MistralForCausalLM",
"MixtralForCausalLM",
"Idefics3ForConditionalGeneration",
"SmolVLMForConditionalGeneration",
"VLlama3ForCausalLM",
"LlavaForConditionalGeneration")
class LlamaModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# fix for SmolVLM2, missing `num_attention_heads` in config.json
if self.hparams["architectures"][0] == "SmolVLMForConditionalGeneration":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
# fix for Pixtral, missing `num_attention_heads` in config.json
if self.hparams["architectures"][0] == "LlavaForConditionalGeneration" \
and self.hparams.get("model_type") == "mistral":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)

def set_vocab(self):
try:
self._set_vocab_sentencepiece()
Expand Down Expand Up @@ -1905,11 +1906,7 @@ class LlavaVisionModel(VisionModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.hparams["model_type"] == "pixtral":
# fix missing config.json values
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 24)
self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 4096)
self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1024)
# layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
self.img_break_tok_id = 12 # see tokenizer_config.json
else:
Expand All @@ -1920,7 +1917,6 @@ def set_gguf_parameters(self):
hparams = self.hparams
if hparams["model_type"] == "pixtral":
self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
# default values below are taken from HF tranformers code
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
self.gguf_writer.add_vision_use_silu(True)

Expand Down Expand Up @@ -1951,13 +1947,12 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
class SmolVLMModel(VisionModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# fix for SmolVLM2, missing some keys in config.json
# default values are taken from transformers code
if self.hparams["model_type"] == "smolvlm_vision":
# fix for SmolVLM2, missing some keys in config.json
# default values are taken from transformers code
self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
self.hparams["num_hidden_layers"] = self.hparams.get("num_hidden_layers", 12)

def set_gguf_parameters(self):
super().set_gguf_parameters()
Expand Down Expand Up @@ -5805,6 +5800,19 @@ def split_str_to_n_bytes(split_str: str) -> int:
return n


def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
text_config = hparams.get("text_config", {})
vision_config = hparams.get("vision_config", {})
arch = hparams["architectures"][0]
# if "architectures" is found in the sub-config, use that instead
if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
arch = text_config["architectures"][0]
elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
arch = vision_config["architectures"][0]
return arch


def main() -> None:
args = parse_args()

Expand Down Expand Up @@ -5857,16 +5865,15 @@ def main() -> None:

logger.info(f"Loading model: {dir_model.name}")

hparams = ModelBase.load_hparams(dir_model)

if args.mmproj:
if "mmproj" not in fname_out.name:
fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")

with torch.inference_mode():
output_type = ftype_map[args.outtype]
model_architecture = hparams["architectures"][0]
model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
model_architecture = get_model_architecture(dir_model, model_type)
logger.info(f"Model architecture: {model_architecture}")
try:
model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
except NotImplementedError:
Expand Down