-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
…erflow-calculation-logic GSW-1045 feat: update uint256 overflow calcualtion logic
- Loading branch information
Showing
2 changed files
with
130 additions
and
79 deletions.
There are no files selected for viewing
184 changes: 105 additions & 79 deletions
184
_deploy/p/demo/gnoswap/uint256/gs_overflow_calculation.gno
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,102 +1,128 @@ | ||
// REF: https://github.com/Uniswap/solidity-lib/blob/master/contracts/libraries/FullMath.sol | ||
// REF: https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol | ||
package uint256 | ||
|
||
const ( | ||
MAX_UINT256 = "115792089237316195423570985008687907853269984665640564039457584007913129639935" | ||
) | ||
|
||
func fullMul( | ||
x *Uint, | ||
y *Uint, | ||
) (*Uint, *Uint) { // l, h | ||
mm := new(Uint).MulMod(x, y, MustFromDecimal(MAX_UINT256)) | ||
|
||
l := new(Uint).Mul(x, y) | ||
h := new(Uint).Sub(mm, l) | ||
|
||
if mm.Lt(l) { | ||
h = new(Uint).Sub(h, One()) | ||
} | ||
|
||
return l, h | ||
} | ||
|
||
func fullDiv( | ||
l *Uint, | ||
h *Uint, | ||
d *Uint, | ||
func MulDiv( | ||
a, b, denominator *Uint, | ||
) *Uint { | ||
// uint256 pow2 = d & -d; | ||
// d | ||
_negD := new(Uint).Neg(d) | ||
pow2 := new(Uint).And(d, _negD) | ||
d = new(Uint).Div(d, pow2) | ||
l = new(Uint).Div(l, pow2) | ||
|
||
_negPow2 := new(Uint).Neg(pow2) | ||
|
||
value1 := new(Uint).Div(_negPow2, pow2) // (-pow2) / pow2 | ||
value2 := new(Uint).Add(value1, One()) // (-pow2) / pow2 + 1) | ||
value3 := new(Uint).Mul(h, value2) // h * ((-pow2) / pow2 + 1); | ||
l = new(Uint).Add(l, value3) | ||
|
||
r := One() | ||
for i := 0; i < 8; i++ { | ||
value1 := new(Uint).Mul(d, r) // d * r | ||
value2 := new(Uint).Sub(NewUint(2), value1) // 2 - ( d * r ) | ||
r = new(Uint).Mul(r, value2) // r *= 2 - d * r; | ||
prod0 := Zero() | ||
prod1 := Zero() | ||
|
||
{ | ||
mm := new(Uint).MulMod(a, b, new(Uint).Not(Zero())) | ||
prod0 = new(Uint).Mul(a, b) | ||
|
||
ltBool := mm.Lt(prod0) | ||
ltUint := Zero() | ||
if ltBool { | ||
ltUint = One() | ||
} | ||
prod1 = new(Uint).Sub(new(Uint).Sub(mm, prod0), ltUint) | ||
} | ||
res := new(Uint).Mul(l, r) | ||
return res | ||
} | ||
|
||
func MulDiv( | ||
x *Uint, | ||
y *Uint, | ||
d *Uint, | ||
) *Uint { | ||
l, h := fullMul(x, y) | ||
mm := new(Uint).MulMod(x, y, d) | ||
// Handle non-overflow cases, 256 by 256 division | ||
if prod1.IsZero() { | ||
if !(denominator.Gt(Zero())) { // require(denominator > 0); | ||
panic("denominator > 0") | ||
} | ||
|
||
if mm.Gt(l) { | ||
h = new(Uint).Sub(h, One()) | ||
result := new(Uint).Div(prod0, denominator) | ||
return result | ||
} | ||
l = new(Uint).Sub(l, mm) | ||
|
||
if h.IsZero() { | ||
return new(Uint).Div(l, d) | ||
// Make sure the result is less than 2**256. | ||
// Also prevents denominator == 0 | ||
if !(denominator.Gt(prod1)) { // require(denominator > prod1) | ||
panic("denominator > prod1") | ||
} | ||
|
||
if !(h.Lt(d)) { | ||
panic("FULLDIV_OVERFLOW") | ||
} | ||
/////////////////////////////////////////////// | ||
// 512 by 256 division. | ||
/////////////////////////////////////////////// | ||
|
||
// Make division exact by subtracting the remainder from [prod1 prod0] | ||
// Compute remainder using mulmod | ||
remainder := Zero() | ||
remainder = new(Uint).MulMod(a, b, denominator) | ||
|
||
return fullDiv(l, h, d) | ||
// Subtract 256 bit number from 512 bit number | ||
gtBool := remainder.Gt(prod0) | ||
gtUint := Zero() | ||
if gtBool { | ||
gtUint = One() | ||
} | ||
prod1 = new(Uint).Sub(prod1, gtUint) | ||
prod0 = new(Uint).Sub(prod0, remainder) | ||
|
||
// Factor powers of two out of denominator | ||
// Compute largest power of two divisor of denominator. | ||
// Always >= 1. | ||
twos := Zero() | ||
twos = new(Uint).And(new(Uint).Neg(denominator), denominator) | ||
|
||
// Divide denominator by power of two | ||
denominator = new(Uint).Div(denominator, twos) | ||
|
||
// Divide [prod1 prod0] by the factors of two | ||
prod0 = new(Uint).Div(prod0, twos) | ||
|
||
// Shift in bits from prod1 into prod0. For this we need | ||
// to flip `twos` such that it is 2**256 / twos. | ||
// If twos is zero, then it becomes one | ||
twos = new(Uint).Add( | ||
new(Uint).Div( | ||
new(Uint).Sub(Zero(), twos), | ||
twos, | ||
), | ||
One(), | ||
) | ||
prod0 = new(Uint).Or(prod0, new(Uint).Mul(prod1, twos)) | ||
|
||
// Invert denominator mod 2**256 | ||
// Now that denominator is an odd number, it has an inverse | ||
// modulo 2**256 such that denominator * inv = 1 mod 2**256. | ||
// Compute the inverse by starting with a seed that is correct | ||
// correct for four bits. That is, denominator * inv = 1 mod 2**4 | ||
inv := Zero() | ||
inv = new(Uint).Mul(NewUint(3), denominator) | ||
inv = new(Uint).Xor(inv, NewUint(2)) | ||
|
||
// Now use Newton-Raphson iteration to improve the precision. | ||
// Thanks to Hensel's lifting lemma, this also works in modular | ||
// arithmetic, doubling the correct bits in each step. | ||
|
||
inv = new(Uint).Mul(inv, new(Uint).Sub(NewUint(2), new(Uint).Mul(denominator, inv))) // inverse mod 2**8 | ||
inv = new(Uint).Mul(inv, new(Uint).Sub(NewUint(2), new(Uint).Mul(denominator, inv))) // inverse mod 2**16 | ||
inv = new(Uint).Mul(inv, new(Uint).Sub(NewUint(2), new(Uint).Mul(denominator, inv))) // inverse mod 2**32 | ||
inv = new(Uint).Mul(inv, new(Uint).Sub(NewUint(2), new(Uint).Mul(denominator, inv))) // inverse mod 2**64 | ||
inv = new(Uint).Mul(inv, new(Uint).Sub(NewUint(2), new(Uint).Mul(denominator, inv))) // inverse mod 2**128 | ||
inv = new(Uint).Mul(inv, new(Uint).Sub(NewUint(2), new(Uint).Mul(denominator, inv))) // inverse mod 2**256 | ||
|
||
// Because the division is now exact we can divide by multiplying | ||
// with the modular inverse of denominator. This will give us the | ||
// correct result modulo 2**256. Since the precoditions guarantee | ||
// that the outcome is less than 2**256, this is the final result. | ||
// We don't need to compute the high bits of the result and prod1 | ||
// is no longer required. | ||
result := new(Uint).Mul(prod0, inv) | ||
return result | ||
} | ||
|
||
func DivRoundingUp( | ||
x *Uint, | ||
y *Uint, | ||
func MulDivRoundingUp( | ||
a, b, denominator *Uint, | ||
) *Uint { | ||
div := new(Uint).Div(x, y) | ||
result := MulDiv(a, b, denominator) | ||
|
||
mod := new(Uint).Mod(x, y) | ||
return new(Uint).Add(div, gt(mod, Zero())) | ||
} | ||
if new(Uint).MulMod(a, b, denominator).Gt(Zero()) { | ||
if !(result.Lt(MustFromDecimal(MAX_UINT256))) { // require(result < MAX_UINT256) | ||
panic("result < MAX_UINT256") | ||
} | ||
|
||
// HELPERs | ||
func lt(x, y *Uint) *Uint { | ||
if x.Lt(y) { | ||
return One() | ||
} else { | ||
return Zero() | ||
result = new(Uint).Add(result, One()) | ||
} | ||
} | ||
|
||
func gt(x, y *Uint) *Uint { | ||
if x.Gt(y) { | ||
return One() | ||
} else { | ||
return Zero() | ||
} | ||
return result | ||
} |
25 changes: 25 additions & 0 deletions
25
_deploy/p/demo/gnoswap/uint256/gs_overflow_calculation_test.gno
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
package uint256 | ||
|
||
import "testing" | ||
|
||
func TestMulDiv(t *testing.T) { | ||
a := MustFromDecimal("3961170441225674086664416884948992") | ||
b := MustFromDecimal("1461300573427867316490840528175048480732148624513") | ||
c := MustFromDecimal("1461300573427867316570072651998408279850435624081") | ||
|
||
z := MulDiv(a, b, c) | ||
if z.ToString() != "3961170441225674086449641121090634" { | ||
t.Errorf("expected 3961170441225674086449641121090634, got %s", z.ToString()) | ||
} | ||
} | ||
|
||
func TestMulDivRoundingUp(t *testing.T) { | ||
a := MustFromDecimal("3961170441225674086664416884948992") | ||
b := MustFromDecimal("1461300573427867316490840528175048480732148624513") | ||
c := MustFromDecimal("1461300573427867316570072651998408279850435624081") | ||
|
||
z := MulDivRoundingUp(a, b, c) | ||
if z.ToString() != "3961170441225674086449641121090635" { | ||
t.Errorf("expected 3961170441225674086449641121090635, got %s", z.ToString()) | ||
} | ||
} |