Skip to content

Commit

Permalink
update fps scripts (open-mmlab#6145)
Browse files Browse the repository at this point in the history
* update fps scripts

* rename

* add cfg_path

* update

* update print

* update print

* Fix detr error when repeat_num >1

* fix comment

* add doc

* update doc

* update comment

* add comment

* rename
  • Loading branch information
hhaAndroid authored Sep 30, 2021
1 parent 65352b5 commit c88509c
Show file tree
Hide file tree
Showing 4 changed files with 165 additions and 21 deletions.
105 changes: 90 additions & 15 deletions .dev_scripts/benchmark_inference_fps.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,8 @@
import mmcv
from mmcv import Config, DictAction
from mmcv.runner import init_dist
from tools.analysis_tools.benchmark import measure_inferense_speed
from terminaltables import GithubFlavoredMarkdownTable
from tools.analysis_tools.benchmark import repeat_measure_inference_speed


def parse_args():
Expand All @@ -19,12 +20,17 @@ def parse_args():
type=int,
default=1,
help='round a number to a given precision in decimal digits')
parser.add_argument(
'--repeat-num',
type=int,
default=1,
help='number of repeat times of measurement for averaging the results')
parser.add_argument(
'--out', type=str, help='output path of gathered fps to be stored')
parser.add_argument(
'--max-iter', type=int, default=400, help='num of max iter')
'--max-iter', type=int, default=2000, help='num of max iter')
parser.add_argument(
'--log-interval', type=int, default=40, help='interval of logging')
'--log-interval', type=int, default=50, help='interval of logging')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
Expand Down Expand Up @@ -52,9 +58,43 @@ def parse_args():
return args


def results2markdown(result_dict):
table_data = []
is_multiple_results = False
for cfg_name, value in result_dict.items():
name = cfg_name.replace('configs/', '')
fps = value['fps']
ms_times_pre_image = value['ms_times_pre_image']
if isinstance(fps, list):
is_multiple_results = True
mean_fps = value['mean_fps']
mean_times_pre_image = value['mean_times_pre_image']
fps_str = ','.join([str(s) for s in fps])
ms_times_pre_image_str = ','.join(
[str(s) for s in ms_times_pre_image])
table_data.append([
name, fps_str, mean_fps, ms_times_pre_image_str,
mean_times_pre_image
])
else:
table_data.append([name, fps, ms_times_pre_image])

if is_multiple_results:
table_data.insert(0, [
'model', 'fps', 'mean_fps', 'times_pre_image(ms)',
'mean_times_pre_image(ms)'
])

else:
table_data.insert(0, ['model', 'fps', 'times_pre_image(ms)'])
table = GithubFlavoredMarkdownTable(table_data)
print(table.table, flush=True)


if __name__ == '__main__':
args = parse_args()
assert args.round_num >= 0
assert args.repeat_num >= 1

config = Config.fromfile(args.config)

Expand All @@ -75,20 +115,55 @@ def parse_args():
checkpoint = osp.join(args.checkpoint_root,
model_info['checkpoint'].strip())
try:
fps = measure_inferense_speed(cfg, checkpoint, args.max_iter,
args.log_interval,
args.fuse_conv_bn)
print(
f'{cfg_path} fps : {fps:.{args.round_num}f} img / s, '
f'times per image: {1000/fps:.{args.round_num}f} ms / img',
flush=True)
result_dict[cfg_path] = dict(
fps=round(fps, args.round_num),
ms_times_pre_image=round(1000 / fps, args.round_num))
fps = repeat_measure_inference_speed(cfg, checkpoint,
args.max_iter,
args.log_interval,
args.fuse_conv_bn,
args.repeat_num)
if args.repeat_num > 1:
fps_list = [round(fps_, args.round_num) for fps_ in fps]
times_pre_image_list = [
round(1000 / fps_, args.round_num) for fps_ in fps
]
mean_fps = round(
sum(fps_list) / len(fps_list), args.round_num)
mean_times_pre_image = round(
sum(times_pre_image_list) / len(times_pre_image_list),
args.round_num)
print(
f'{cfg_path} '
f'Overall fps: {fps_list}[{mean_fps}] img / s, '
f'times per image: '
f'{times_pre_image_list}[{mean_times_pre_image}] '
f'ms / img',
flush=True)
result_dict[cfg_path] = dict(
fps=fps_list,
mean_fps=mean_fps,
ms_times_pre_image=times_pre_image_list,
mean_times_pre_image=mean_times_pre_image)
else:
print(
f'{cfg_path} fps : {fps:.{args.round_num}f} img / s, '
f'times per image: {1000 / fps:.{args.round_num}f} '
f'ms / img',
flush=True)
result_dict[cfg_path] = dict(
fps=round(fps, args.round_num),
ms_times_pre_image=round(1000 / fps, args.round_num))
except Exception as e:
print(f'{config} error: {repr(e)}')
result_dict[cfg_path] = 0
print(f'{cfg_path} error: {repr(e)}')
if args.repeat_num > 1:
result_dict[cfg_path] = dict(
fps=[0],
mean_fps=0,
ms_times_pre_image=[0],
mean_times_pre_image=0)
else:
result_dict[cfg_path] = dict(fps=0, ms_times_pre_image=0)

if args.out:
mmcv.mkdir_or_exist(args.out)
mmcv.dump(result_dict, osp.join(args.out, 'batch_inference_fps.json'))

results2markdown(result_dict)
2 changes: 1 addition & 1 deletion docs/1_exist_data_model.md
Original file line number Diff line number Diff line change
Expand Up @@ -283,7 +283,7 @@ Optional arguments:

### Examples

Assume that you have already downloaded the checkpoints to the directory `checkpoints/`.
Assuming that you have already downloaded the checkpoints to the directory `checkpoints/`.

1. Test Faster R-CNN and visualize the results. Press any key for the next image.
Config and checkpoint files are available [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn).
Expand Down
27 changes: 26 additions & 1 deletion docs/useful_tools.md
Original file line number Diff line number Diff line change
Expand Up @@ -377,10 +377,35 @@ python tools/dataset_converters/cityscapes.py ${CITYSCAPES_PATH} [-h] [--img-dir
python tools/dataset_converters/pascal_voc.py ${DEVKIT_PATH} [-h] [-o ${OUT_DIR}]
```

## Robust Detection Benchmark
## Benchmark

### Robust Detection Benchmark

`tools/analysis_tools/test_robustness.py` and`tools/analysis_tools/robustness_eval.py` helps users to evaluate model robustness. The core idea comes from [Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming](https://arxiv.org/abs/1907.07484). For more information how to evaluate models on corrupted images and results for a set of standard models please refer to [robustness_benchmarking.md](robustness_benchmarking.md).

### FPS Benchmark

`tools/analysis_tools/benchmark.py` helps users to calculate FPS. The FPS value includes model forward and post-processing. In order to get a more accurate value, currently only supports single GPU distributed startup mode.

```shell
python -m torch.distributed.launch --nproc_per_node=1 --master_port=${PORT} tools/analysis_tools/benchmark.py \
${CONFIG} \
${CHECKPOINT} \
[--repeat-num ${REPEAT_NUM}] \
[--max-iter ${MAX_ITER}] \
[--log-interval ${LOG_INTERVAL}] \
--launcher pytorch
```

Examples: Assuming that you have already downloaded the `Faster R-CNN` model checkpoint to the directory `checkpoints/`.

```shell
python -m torch.distributed.launch --nproc_per_node=1 --master_port=29500 tools/analysis_tools/benchmark.py \
configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
--launcher pytorch
```

## Miscellaneous

### Evaluating a metric
Expand Down
52 changes: 48 additions & 4 deletions tools/analysis_tools/benchmark.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import os
import time

Expand All @@ -18,6 +19,11 @@ def parse_args():
parser = argparse.ArgumentParser(description='MMDet benchmark a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--repeat-num',
type=int,
default=1,
help='number of repeat times of measurement for averaging the results')
parser.add_argument(
'--max-iter', type=int, default=2000, help='num of max iter')
parser.add_argument(
Expand Down Expand Up @@ -49,7 +55,7 @@ def parse_args():
return args


def measure_inferense_speed(cfg, checkpoint, max_iter, log_interval,
def measure_inference_speed(cfg, checkpoint, max_iter, log_interval,
is_fuse_conv_bn):
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
Expand All @@ -66,7 +72,10 @@ def measure_inferense_speed(cfg, checkpoint, max_iter, log_interval,
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
# Because multiple processes will occupy additional CPU resources,
# FPS statistics will be more unstable when workers_per_gpu is not 0.
# It is reasonable to set workers_per_gpu to 0.
workers_per_gpu=0,
dist=True,
shuffle=False)

Expand Down Expand Up @@ -123,6 +132,40 @@ def measure_inferense_speed(cfg, checkpoint, max_iter, log_interval,
return fps


def repeat_measure_inference_speed(cfg,
checkpoint,
max_iter,
log_interval,
is_fuse_conv_bn,
repeat_num=1):
assert repeat_num >= 1

fps_list = []

for _ in range(repeat_num):
#
cp_cfg = copy.deepcopy(cfg)

fps_list.append(
measure_inference_speed(cp_cfg, checkpoint, max_iter, log_interval,
is_fuse_conv_bn))

if repeat_num > 1:
fps_list_ = [round(fps, 1) for fps in fps_list]
times_pre_image_list_ = [round(1000 / fps, 1) for fps in fps_list]
mean_fps_ = sum(fps_list_) / len(fps_list_)
mean_times_pre_image_ = sum(times_pre_image_list_) / len(
times_pre_image_list_)
print(
f'Overall fps: {fps_list_}[{mean_fps_:.1f}] img / s, '
f'times per image: '
f'{times_pre_image_list_}[{mean_times_pre_image_:.1f}] ms / img',
flush=True)
return fps_list

return fps_list[0]


def main():
args = parse_args()

Expand All @@ -135,8 +178,9 @@ def main():
else:
init_dist(args.launcher, **cfg.dist_params)

measure_inferense_speed(cfg, args.checkpoint, args.max_iter,
args.log_interval, args.fuse_conv_bn)
repeat_measure_inference_speed(cfg, args.checkpoint, args.max_iter,
args.log_interval, args.fuse_conv_bn,
args.repeat_num)


if __name__ == '__main__':
Expand Down

0 comments on commit c88509c

Please sign in to comment.