Skip to content

grandinetech/ecfft-bn254

 
 

Repository files navigation

ECFFT algorithms on the BN254 base field

This crate implements structs and traits for the ECFFT algorithms from the paper Elliptic Curve Fast Fourier Transform (ECFFT) Part I: Fast Polynomial Algorithms over all Finite Fields by Eli Ben-Sasson, Dan Carmon, Swastik Kopparty and David Levit.

A concrete implementation is provided for the BN254 base field which is not FFT friendly (two-adicity of 1).

Example

fn test_evaluations() {
    type P = Bn254EcFftParameters;
    // ECFFT precomputations.
    let precomputation = P::precompute();
    // Can interpolate polynomials up to degree 2^14.
    let log_n = 14;
    let mut rng = test_rng();
    // Generate a random polynomial.
    let coeffs: Vec<F> = (0..1 << log_n).map(|_| rng.gen()).collect();
    let poly = DensePolynomial { coeffs };
    // Naive evaluations.
    let evals = P::coset()
        .iter()
        .map(|x| poly.evaluate(x))
        .collect::<Vec<_>>();
    // ECFFT evaluations.
    let ecfft_evals = precomputation.evaluate_over_domain(&poly);

    assert_eq!(evals, ecfft_evals);
}

BLS12-381

The base field of the BLS12-381 curve is also supported, also for degrees up to 2^14. Credits to Youssef El Housni for finding a curve with 2-adicity 14.

Precomputations

The implementation uses precomputations for the coset and isogenies used in the ECFFT. These precomputations are computed in get_params.sage and are stored in the bn254_coset and bn254_isogenies files.

To implement the ECFFT for other fields, similar precomputations should be performed. For example, here is how to generate the precomputations for BLS12-381:

# sage get_params.sage p a b output_filename
sage get_params.sage 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab 0x1800fb41dab7368489a980e14a746abfe7c87588aac25c113301d524b734a5043bbc89dd7d0c5b41de5d348ac2e838c6 0x11c65a0a6e52b8b88366e0b0df28c6804f14f35cb833cb0d918c9e758f044d95777beb965a967af4ef518ad0618a809a bls12-381

Benchmarks

Here is a comparison of the running time for the evaluation of a polynomial of degree n-1 on a domain of n points using 3 algorithms:

  • the naive evaluation in O(n^2),
  • the classic FFT (on the FFT-friendly BN254 scalar field) in O(n * log n),
  • the ECFFT ENTER algorithm in O(n * log^2 n).
log n Naive (ms) Classic (ms) ECFFT (ms) Naive/ECFFT ECFFT/Classic
1 0.000165 0.000126 0.000384 0.429 3.056
2 0.00046 0.000256 0.002144 0.214 8.36
3 0.00203 0.000639 0.008599 0.236 13.456
4 0.00688 0.001781 0.030458 0.226 17.103
5 0.032354 0.003268 0.085556 0.378 26.177
6 0.119391 0.007594 0.239939 0.498 31.595
7 0.479542 0.018378 0.613242 0.782 33.368
8 1.873195 0.043694 1.425794 1.314 32.632
9 7.619662 0.093 3.964933 1.922 42.634
10 30.034845 0.20955 9.308925 3.226 44.423
11 121.564343 0.453727 22.186604 5.479 48.899
12 482.728362 0.976134 51.505625 9.372 52.765
13 1930.495799 2.166843 119.317395 16.18 55.065
14 7745.103265 4.57555 275.499648 28.113 60.211

References

Releases

No releases published

Packages

No packages published

Languages

  • Rust 90.6%
  • Sage 9.4%