Skip to content

MiniMol is a 10M-parameters molecular fingerprinting model pre-trained on >3300 biological and quantum tasks

License

Notifications You must be signed in to change notification settings

graphcore-research/minimol

Repository files navigation

Minimol architecture

A parameter-efficient molecular featuriser that generalises well to biological tasks thanks to the effective pre-training on biological and quantum mechnical datasets.

The model has been introduced in the paper 𝙼𝚒𝚗𝚒𝙼𝚘𝚕: A Parameter-Efficient Foundation Model for Molecular Learning, published in the ICML workshop on Accessible and Efficient Foundation Models for Biological Discovery in 2024.

Usage

Embeddings can be generated in four lines of code:

from minimol import Minimol
model = Minimol()
smiles = [
    'COc1ccc2cc(C(=O)NC3(C(=O)N[C@H](Cc4ccccc4)C(=O)NCC4CCN(CC5CCOCC5)CC4)CCCC3)sc2c1',
    'Nc1nc(=O)c2c([nH]1)NCC(CNc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1)N2C=O',
    'O=C1CCCN1CCCCN1CCN(c2cc(C(F)(F)F)ccn2)CC1',
    'c1ccc(-c2cccnc2)cc1',
]
model(smiles)
>> A list of 4 tensors of (512,) shape

For a Colab notebook showing how to use Minimol's fingerprints to achieve SoTA results on a downstream task, click here: Open In Colab

Installation

Pip

When used with cuda, use nvcc --version to see which version of the driver is installed on your machine, to select the wheel (cuXXX):

pip install torch-sparse torch-cluster torch-scatter -f https://pytorch-geometric.com/whl/torch-2.3.0+cu124.html
pip install minimol

Local

git clone [email protected]:graphcore-research/minimol.git 
cd minimol
mamba env create -f env.yml -n minimol_venv
mamba activate minimol

To install mamba see the official documentation.

Performance

The model has been evaluated on 22 benchmarks from the ADMET group of Therapeutics Data Commons (TDC). These are the results when comparing to MolE and TOP5 models from the TDC leaderboard (as of June 2024):

TDC Dataset TDC Leaderboard MolE MiniMol (GINE)
Name Size Metric SoTA Result Result Rank Result Rank
Absorption
Caco2 Wang 906 MAE 0.276 ± 0.005 0.310 ± 0.010 6 0.350 ± 0.018 7
Bioavailability Ma 640 AUROC 0.748 ± 0.033 0.654 ± 0.028 7 0.689 ± 0.020 5
Lipophilicity AZ 4,200 MAE 0.467 ± 0.006 0.469 ± 0.009 3 0.456 ± 0.008 1
Solubility AqSolDB 9,982 MAE 0.761 ± 0.025 0.792 ± 0.005 5 0.741 ± 0.013 1
HIA Hou 578 AUROC 0.989 ± 0.001 0.963 ± 0.019 7 0.993 ± 0.005 1
Pgp Broccatelli 1,212 AUROC 0.938 ± 0.002 0.915 ± 0.005 7 0.942 ± 0.002 1
Distribution
BBB Martins 1,975 AUROC 0.916 ± 0.001 0.903 ± 0.005 7 0.924 ± 0.003 1
PPBR AZ 1,797 MAE 7.526 ± 0.106 8.073 ± 0.335 6 7.696 ± 0.125 4
VDss Lombardo 1,130 Spearman 0.713 ± 0.007 0.654 ± 0.031 3 0.535 ± 0.027 7
Metabolism
CYP2C9 Veith 12,092 AUPRC 0.859 ± 0.001 0.801 ± 0.003 5 0.823 ± 0.006 4
CYP2D6 Veith 13,130 AUPRC 0.790 ± 0.001 0.682 ± 0.008 6 0.719 ± 0.004 5
CYP3A4 Veith 12,328 AUPRC 0.916 ± 0.000 0.867 ± 0.003 7 0.877 ± 0.001 4
CYP2C9 Substrate 666 AUPRC 0.441 ± 0.033 0.446 ± 0.062 2 0.474 ± 0.025 1
CYP2D6 Substrate 664 AUPRC 0.736 ± 0.024 0.699 ± 0.018 7 0.695 ± 0.032 6
CYP3A4 Substrate 667 AUROC 0.662 ± 0.031 0.670 ± 0.018 1 0.663 ± 0.008 2
Excretion
Half Life Obach 667 Spearman 0.562 ± 0.008 0.549 ± 0.024 4 0.495 ± 0.042 6
Clearance Hepatocyte 1,102 Spearman 0.498 ± 0.009 0.381 ± 0.038 7 0.446 ± 0.029 3
Clearance Microsome 1,020 Spearman 0.630 ± 0.010 0.607 ± 0.027 6 0.628 ± 0.005 2
Toxicity
LD50 Zhu 7,385 MAE 0.552 ± 0.009 0.823 ± 0.019 7 0.585 ± 0.005 2
hERG 648 AUROC 0.880 ± 0.002 0.813 ± 0.009 7 0.846 ± 0.016 4
Ames 7,255 AUROC 0.871 ± 0.002 0.883 ± 0.005 1 0.849 ± 0.004 5
DILI 475 AUROC 0.925 ± 0.005 0.577 ± 0.021 7 0.956 ± 0.006 1
Mean Rank: 5.2 3.3

License

Copyright (c) 2024 Graphcore Ltd. Licensed under the MIT License.

The included code is released under the MIT license (see details of the license).

About

MiniMol is a 10M-parameters molecular fingerprinting model pre-trained on >3300 biological and quantum tasks

Resources

License

Stars

Watchers

Forks