-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e2c9264
commit 223f996
Showing
2 changed files
with
128 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Copyright (c) 2023 Graphcore Ltd. All rights reserved.\n", | ||
"\n", | ||
"# Usage example (PopTorch)\n", | ||
"\n", | ||
"Create a toy model to track:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch\n", | ||
"from torch import nn, Tensor\n", | ||
"\n", | ||
"class Model(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super().__init__()\n", | ||
" self.embed = nn.Embedding(10, 4)\n", | ||
" self.project = nn.Linear(4, 4)\n", | ||
" self.unembed = nn.Linear(4, 10)\n", | ||
"\n", | ||
" def forward(self, tokens: Tensor) -> Tensor:\n", | ||
" logits = self.unembed(self.project(self.embed(tokens)))\n", | ||
" return nn.functional.cross_entropy(logits, tokens)\n", | ||
"\n", | ||
"torch.manual_seed(100)\n", | ||
"module = Model()\n", | ||
"inputs = torch.randint(0, 10, (3,))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"**PopTorch:**\n", | ||
"\n", | ||
"A few modifications to work with PopTorch:\n", | ||
" - Any tracking should be contained within `forward()`.\n", | ||
" - We shouldn't call `tensor.cpu()`, as this is implicit on returned tensors.\n", | ||
" - We don't have access to the backward pass." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"[13:48:29.771] [poptorch:cpp] [warning] [DISPATCHER] Type coerced from Long to Int for tensor id 138\n", | ||
"Graph compilation: 100%|██████████| 100/100 [00:04<00:00]\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[Stash(name='embed', type=<class 'torch.nn.modules.sparse.Embedding'>, grad=False, value=tensor([[ 0.4520, -0.1066, 1.1028, -1.1578],\n", | ||
" [-0.4866, -0.1484, -1.6819, 0.7740],\n", | ||
" [-1.0324, 0.2063, -0.7983, 0.4695]])),\n", | ||
" Stash(name='project', type=<class 'torch.nn.modules.linear.Linear'>, grad=False, value=tensor([[ 1.2474, 0.4518, 0.2115, -0.6991],\n", | ||
" [-0.3698, -0.1035, -0.2358, -0.3482],\n", | ||
" [ 0.2165, 0.2673, -0.1278, -0.1348]])),\n", | ||
" Stash(name='unembed', type=<class 'torch.nn.modules.linear.Linear'>, grad=False, value=tensor([[-0.2676, 0.0945, 0.4727, 0.0716, -0.1146, 0.2311, 0.4380, -0.1172,\n", | ||
" 0.6078, -0.0632],\n", | ||
" [ 0.2343, -0.0936, 0.1143, -0.0777, 0.0148, -0.0783, 0.2015, 0.1975,\n", | ||
" 0.2441, -0.3956],\n", | ||
" [ 0.1521, -0.0814, 0.2678, 0.0481, 0.1128, -0.0149, 0.3953, 0.2135,\n", | ||
" 0.3824, -0.2818]]))]" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"from typing import Dict\n", | ||
"import poptorch\n", | ||
"import tensor_tracker\n", | ||
"\n", | ||
"class TrackingModel(Model):\n", | ||
" def forward(self, inputs: Tensor) -> Dict[str, Tensor]:\n", | ||
" with tensor_tracker.track(self, stash_value=lambda t: t) as tracker:\n", | ||
" loss = super().forward(inputs)\n", | ||
" return loss, [t.__dict__ for t in tracker]\n", | ||
"\n", | ||
"loss, tracked = poptorch.inferenceModel(TrackingModel())(inputs)\n", | ||
"tracked = [tensor_tracker.Stash(**d) for d in tracked]\n", | ||
"display(tracked)\n", | ||
"# => [Stash(name=\"embed\", type=nn.Embedding, grad=False, value=tensor(...)),\n", | ||
"# ...]" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.10" | ||
}, | ||
"orig_nbformat": 4 | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |