-
Notifications
You must be signed in to change notification settings - Fork 181
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add DataStax Astra DB vector store driver (#1034)
Co-authored-by: Stefano Lottini <[email protected]>
- Loading branch information
1 parent
47212cf
commit 3cb1fe7
Showing
12 changed files
with
1,175 additions
and
437 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
The following example script ingests a Web page (a blog post), | ||
stores its chunked contents on Astra DB through the Astra DB vector store driver, | ||
and finally runs a RAG process to answer a question specific to the topic of the | ||
Web page. | ||
|
||
This script requires that a vector collection has been created in the Astra database | ||
(with name `"griptape_test_collection"` and vector dimension matching the embedding being used, i.e. 1536 in this case). | ||
|
||
_Note:_ Besides the [Astra DB](../griptape-framework/drivers/vector-store-drivers.md#astra-db) extra, | ||
this example requires the `drivers-web-scraper-trafilatura` | ||
Griptape extra to be installed as well. | ||
|
||
|
||
```python | ||
import os | ||
|
||
from griptape.drivers import ( | ||
AstraDbVectorStoreDriver, | ||
OpenAiChatPromptDriver, | ||
OpenAiEmbeddingDriver, | ||
) | ||
from griptape.engines.rag import RagEngine | ||
from griptape.engines.rag.modules import ( | ||
PromptResponseRagModule, | ||
VectorStoreRetrievalRagModule, | ||
) | ||
from griptape.engines.rag.stages import ResponseRagStage, RetrievalRagStage | ||
from griptape.loaders import WebLoader | ||
from griptape.structures import Agent | ||
from griptape.tools import RagClient, TaskMemoryClient | ||
|
||
|
||
namespace = "datastax_blog" | ||
input_blogpost = ( | ||
"www.datastax.com/blog/indexing-all-of-wikipedia-on-a-laptop" | ||
) | ||
|
||
vector_store_driver = AstraDbVectorStoreDriver( | ||
embedding_driver=OpenAiEmbeddingDriver(), | ||
api_endpoint=os.environ["ASTRA_DB_API_ENDPOINT"], | ||
token=os.environ["ASTRA_DB_APPLICATION_TOKEN"], | ||
collection_name="griptape_test_collection", | ||
astra_db_namespace=os.environ.get("ASTRA_DB_KEYSPACE"), | ||
) | ||
|
||
engine = RagEngine( | ||
retrieval_stage=RetrievalRagStage( | ||
retrieval_modules=[ | ||
VectorStoreRetrievalRagModule( | ||
vector_store_driver=vector_store_driver, | ||
query_params={ | ||
"count": 2, | ||
"namespace": namespace, | ||
}, | ||
) | ||
] | ||
), | ||
response_stage=ResponseRagStage( | ||
response_module=PromptResponseRagModule( | ||
prompt_driver=OpenAiChatPromptDriver(model="gpt-4o") | ||
) | ||
) | ||
) | ||
|
||
vector_store_driver.upsert_text_artifacts( | ||
{namespace: WebLoader(max_tokens=256).load(input_blogpost)} | ||
) | ||
|
||
vector_store_tool = RagClient( | ||
description="A DataStax blog post", | ||
rag_engine=engine, | ||
) | ||
agent = Agent(tools=[vector_store_tool, TaskMemoryClient(off_prompt=False)]) | ||
agent.run( | ||
"What engine made possible to index such an amount of data, " | ||
"and what kind of tuning was required?" | ||
) | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
from __future__ import annotations | ||
|
||
from typing import TYPE_CHECKING, Any, Optional | ||
|
||
from attrs import define, field | ||
|
||
from griptape.drivers import BaseVectorStoreDriver | ||
from griptape.utils import import_optional_dependency | ||
|
||
if TYPE_CHECKING: | ||
from astrapy import Collection | ||
from astrapy.authentication import TokenProvider | ||
|
||
|
||
@define | ||
class AstraDbVectorStoreDriver(BaseVectorStoreDriver): | ||
"""A Vector Store Driver for Astra DB. | ||
Attributes: | ||
embedding_driver: a `griptape.drivers.BaseEmbeddingDriver` for embedding computations within the store | ||
api_endpoint: the "API Endpoint" for the Astra DB instance. | ||
token: a Database Token ("AstraCS:...") secret to access Astra DB. An instance of `astrapy.authentication.TokenProvider` is also accepted. | ||
collection_name: the name of the collection on Astra DB. The collection must have been created beforehand, | ||
and support vectors with a vector dimension matching the embeddings being used by this driver. | ||
environment: the environment ("prod", "hcd", ...) hosting the target Data API. | ||
It can be omitted for production Astra DB targets. See `astrapy.constants.Environment` for allowed values. | ||
astra_db_namespace: optional specification of the namespace (in the Astra database) for the data. | ||
*Note*: not to be confused with the "namespace" mentioned elsewhere, which is a grouping within this vector store. | ||
""" | ||
|
||
api_endpoint: str = field(kw_only=True, metadata={"serializable": True}) | ||
token: Optional[str | TokenProvider] = field(kw_only=True, default=None, metadata={"serializable": False}) | ||
collection_name: str = field(kw_only=True, metadata={"serializable": True}) | ||
environment: Optional[str] = field(kw_only=True, default=None, metadata={"serializable": True}) | ||
astra_db_namespace: Optional[str] = field(default=None, kw_only=True, metadata={"serializable": True}) | ||
|
||
collection: Collection = field(init=False) | ||
|
||
def __attrs_post_init__(self) -> None: | ||
astrapy = import_optional_dependency("astrapy") | ||
self.collection = ( | ||
astrapy.DataAPIClient( | ||
caller_name="griptape", | ||
environment=self.environment, | ||
) | ||
.get_database( | ||
self.api_endpoint, | ||
token=self.token, | ||
namespace=self.astra_db_namespace, | ||
) | ||
.get_collection( | ||
name=self.collection_name, | ||
) | ||
) | ||
|
||
def delete_vector(self, vector_id: str) -> None: | ||
"""Delete a vector from Astra DB store. | ||
The method succeeds regardless of whether a vector with the provided ID | ||
was actually stored or not in the first place. | ||
Args: | ||
vector_id: ID of the vector to delete. | ||
""" | ||
self.collection.delete_one({"_id": vector_id}) | ||
|
||
def upsert_vector( | ||
self, | ||
vector: list[float], | ||
*, | ||
vector_id: Optional[str] = None, | ||
namespace: Optional[str] = None, | ||
meta: Optional[dict] = None, | ||
**kwargs: Any, | ||
) -> str: | ||
"""Write a vector to the Astra DB store. | ||
In case the provided ID exists already, an overwrite will take place. | ||
Args: | ||
vector: the vector to be upserted. | ||
vector_id: the ID for the vector to store. If omitted, a server-provided new ID will be employed. | ||
namespace: a namespace (a grouping within the vector store) to assign the vector to. | ||
meta: a metadata dictionary associated to the vector. | ||
kwargs: additional keyword arguments. Currently none is used: if they are passed, they will be ignored with a warning. | ||
Returns: | ||
the ID of the written vector (str). | ||
""" | ||
document = { | ||
k: v | ||
for k, v in {"$vector": vector, "_id": vector_id, "namespace": namespace, "meta": meta}.items() | ||
if v is not None | ||
} | ||
if vector_id is not None: | ||
self.collection.find_one_and_replace({"_id": vector_id}, document, upsert=True) | ||
return vector_id | ||
else: | ||
insert_result = self.collection.insert_one(document) | ||
return insert_result.inserted_id | ||
|
||
def load_entry(self, vector_id: str, *, namespace: Optional[str] = None) -> Optional[BaseVectorStoreDriver.Entry]: | ||
"""Load a single vector entry from the Astra DB store given its ID. | ||
Args: | ||
vector_id: the ID of the required vector. | ||
namespace: a namespace, within the vector store, to constrain the search. | ||
Returns: | ||
The vector entry (a `BaseVectorStoreDriver.Entry`) if found, otherwise None. | ||
""" | ||
find_filter = {k: v for k, v in {"_id": vector_id, "namespace": namespace}.items() if v is not None} | ||
match = self.collection.find_one(filter=find_filter, projection={"*": 1}) | ||
if match is not None: | ||
return BaseVectorStoreDriver.Entry( | ||
id=match["_id"], vector=match.get("$vector"), meta=match.get("meta"), namespace=match.get("namespace") | ||
) | ||
else: | ||
return None | ||
|
||
def load_entries(self, *, namespace: Optional[str] = None) -> list[BaseVectorStoreDriver.Entry]: | ||
"""Load entries from the Astra DB store. | ||
Args: | ||
namespace: a namespace, within the vector store, to constrain the search. | ||
Returns: | ||
A list of vector (`BaseVectorStoreDriver.Entry`) entries. | ||
""" | ||
find_filter: dict[str, str] = {} if namespace is None else {"namespace": namespace} | ||
return [ | ||
BaseVectorStoreDriver.Entry( | ||
id=match["_id"], vector=match.get("$vector"), meta=match.get("meta"), namespace=match.get("namespace") | ||
) | ||
for match in self.collection.find(filter=find_filter, projection={"*": 1}) | ||
] | ||
|
||
def query( | ||
self, | ||
query: str, | ||
*, | ||
count: Optional[int] = None, | ||
namespace: Optional[str] = None, | ||
include_vectors: bool = False, | ||
**kwargs: Any, | ||
) -> list[BaseVectorStoreDriver.Entry]: | ||
"""Run a similarity search on the Astra DB store, based on a query string. | ||
Args: | ||
query: the query string. | ||
count: the maximum number of results to return. If omitted, defaults will apply. | ||
namespace: the namespace to filter results by. | ||
include_vectors: whether to include vector data in the results. | ||
kwargs: additional keyword arguments. Currently only the free-form dict `filter` | ||
is recognized (and goes straight to the Data API query); | ||
others will generate a warning and be ignored. | ||
Returns: | ||
A list of vector (`BaseVectorStoreDriver.Entry`) entries, | ||
with their `score` attribute set to the vector similarity to the query. | ||
""" | ||
query_filter: Optional[dict[str, Any]] = kwargs.get("filter") | ||
find_filter_ns: dict[str, Any] = {} if namespace is None else {"namespace": namespace} | ||
find_filter = {**(query_filter or {}), **find_filter_ns} | ||
find_projection: Optional[dict[str, int]] = {"*": 1} if include_vectors else None | ||
vector = self.embedding_driver.embed_string(query) | ||
ann_limit = count or BaseVectorStoreDriver.DEFAULT_QUERY_COUNT | ||
matches = self.collection.find( | ||
filter=find_filter, | ||
sort={"$vector": vector}, | ||
limit=ann_limit, | ||
projection=find_projection, | ||
include_similarity=True, | ||
) | ||
return [ | ||
BaseVectorStoreDriver.Entry( | ||
id=match["_id"], | ||
vector=match.get("$vector"), | ||
score=match["$similarity"], | ||
meta=match.get("meta"), | ||
namespace=match.get("namespace"), | ||
) | ||
for match in matches | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.