Skip to content

groupultra/telegram-search

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

preview

Telegram Search

groupultra%2Ftelegram-search | Trendshift

[Try it Now] [Join Discord Server] [简体中文] [日本語]

Warning

We have not issued any virtual currency, please do not be deceived.

Caution

This software can only export your own chat records for search, please do not use it for illegal purposes.

A powerful Telegram chat history search tool that supports vector search and semantic matching. Based on OpenAI's semantic vector technology, it makes your Telegram message retrieval smarter and more precise.

💖 Sponsors

Sponsors

🌐 Try it Now

We provide an online version where you can experience all features of Telegram Search without self-deployment.

Note

We promise not to collect any user privacy data, you can use it with confidence

Visit: https://search.lingogram.app

🚀 Quick Start

Runtime environment variables

Tip

All environment variables are optional. The application will work with default settings, but you can customize behavior by setting these variables.

Start with Docker Image

Important

The simplest way to get started is to run the Docker image without any configuration. All features will work with sensible defaults.

  1. Run docker image default without any environment variables:
docker run -d --name telegram-search \
  -p 3333:3333 \
  -v telegram-search-data:/app/data \
  ghcr.io/groupultra/telegram-search:latest
Example with environment variables

Set the following environment variables before starting the containerized services:

Variable Required Description
TELEGRAM_API_ID optional Telegram app ID from my.telegram.org.
TELEGRAM_API_HASH optional Telegram app hash from the same page.
DATABASE_TYPE optional Database type (postgres or pglite).
DATABASE_URL optional Database connection string used by the server and migrations (Only support when DATABASE_TYPE is postgres).
EMBEDDING_API_KEY optional API key for the embedding provider (OpenAI key, Ollama token, etc.).
EMBEDDING_BASE_URL optional Custom base URL for self-hosted or compatible embedding providers.
EMBEDDING_PROVIDER optional Override embedding provider (openai or ollama).
EMBEDDING_MODEL optional Override embedding model name.
EMBEDDING_DIMENSION optional Override embedding dimension (e.g. 1536, 1024, 768).
docker run -d --name telegram-search \
  -p 3333:3333 \
  -v telegram-search-data:/app/data \
  -e TELEGRAM_API_ID=611335 \
  -e TELEGRAM_API_HASH=d524b414d21f4d37f08684c1df41ac9c \
  -e DATABASE_TYPE=postgres \
  -e DATABASE_URL=postgresql://<postgres-host>:5432/postgres \
  -e EMBEDDING_API_KEY=sk-xxxx \
  -e EMBEDDING_BASE_URL=https://api.openai.com/v1 \
  ghcr.io/groupultra/telegram-search:latest

Replace <postgres-host> with the hostname or IP address of the PostgreSQL instance you want to use.

  1. Access http://localhost:3333 to open the search interface.

Start with Docker Compose

  1. Clone repository.

  2. Run docker compose to start all services including the database:

docker compose up -d
  1. Access http://localhost:3333 to open the search interface.

💻 Development Guide

Caution

Development mode requires Node.js >= 22.18 and pnpm. Make sure you have the correct versions installed before proceeding.

Browser Only

  1. Clone repository

  2. Install dependencies

pnpm install
  1. Start development server:
pnpm run dev

With Backend

  1. Clone repository

  2. Install dependencies

pnpm install
  1. Configure environment
cp config/config.example.yaml config/config.yaml
  1. Start database container:
# Docker is only used for database container in local development.
docker compose up -d pgvector
  1. Start services:
# Start backend
pnpm run server:dev

# Start frontend
pnpm run web:dev

🏗️ Architecture

graph TB
    subgraph "🖥️ Frontend Layer"
        Frontend["Web Frontend<br/>(Vue 3 + Pinia)"]
        Electron["Electron Desktop"]
        
        subgraph "Client Event Handlers"
            ClientAuth["Auth Handler"]
            ClientMessage["Message Handler"] 
            ClientStorage["Storage Handler"]
            ClientEntity["Entity Handler"]
            ClientServer["Server Handler"]
        end
    end

    subgraph "🌐 Communication Layer"
        WS["WebSocket Event Bridge<br/>Real-time Bidirectional<br/>• Event Registration<br/>• Event Forwarding<br/>• Session Management"]
    end

    subgraph "🚀 Backend Service Layer"
        Server["Backend Server<br/>(REST API)"]
        
        subgraph "Session Management"
            SessionMgr["Session Manager<br/>• Client State<br/>• CoreContext Instance<br/>• Event Listeners"]
        end
    end

    subgraph "🎯 Core Event System"
        Context["CoreContext<br/>🔥 Central Event Bus<br/>(EventEmitter3)<br/>• ToCoreEvent<br/>• FromCoreEvent<br/>• Event Wrappers<br/>• Error Handling"]
        
        subgraph "Core Event Handlers"
            AuthHandler["🔐 Auth Handler"]
            MessageHandler["📝 Message Handler"]
            DialogHandler["💬 Dialog Handler"]
            StorageHandler["📦 Storage Handler"]
            ConfigHandler["⚙️ Config Handler"]
            EntityHandler["👤 Entity Handler"]
            GramEventsHandler["📡 Gram Events Handler"]
            MessageResolverHandler["🔄 Message Resolver Handler"]
        end
    end

    subgraph "🔧 Business Service Layer"
        subgraph "Services"
            AuthService["Authentication<br/>Service"]
            MessageService["Message<br/>Service"]
            DialogService["Dialog<br/>Service"]
            StorageService["Storage<br/>Service"]
            ConfigService["Config<br/>Service"]
            EntityService["Entity<br/>Service"]
            ConnectionService["Connection<br/>Service"]
            TakeoutService["Takeout<br/>Service"]
        end
        
        subgraph "Message Processing Pipeline"
            MsgResolverService["Message Resolver<br/>Service"]
            
            subgraph "Message Resolvers"
                EmbeddingResolver["🤖 Embedding<br/>Resolver<br/>(OpenAI)"]
                JiebaResolver["📚 Jieba<br/>Resolver<br/>(Chinese Segmentation)"]
                LinkResolver["🔗 Link<br/>Resolver"]
                MediaResolver["📸 Media<br/>Resolver"]
                UserResolver["👤 User<br/>Resolver"]
            end
        end
    end

    subgraph "🗄️ Data Layer"
        DB["PostgreSQL<br/>+ pgvector"]
        Drizzle["Drizzle ORM"]
    end

    subgraph "📡 External APIs"
        TelegramAPI["Telegram API<br/>(gram.js)"]
        OpenAI["OpenAI API<br/>Vector Embeddings"]
    end

    %% WebSocket Event Flow
    Frontend -.->|"WsEventToServer<br/>• auth:login<br/>• message:query<br/>• dialog:fetch"| WS
    WS -.->|"WsEventToClient<br/>• message:data<br/>• auth:status<br/>• storage:progress"| Frontend
    
    Electron -.->|"WebSocket Events"| WS
    WS -.->|"Real-time Updates"| Electron

    %% Server Layer
    WS <--> Server
    Server --> SessionMgr
    SessionMgr --> Context

    %% Core Event System (Key Architecture Highlight)
    Context <==> AuthHandler
    Context <==> MessageHandler
    Context <==> DialogHandler
    Context <==> StorageHandler
    Context <==> ConfigHandler
    Context <==> EntityHandler
    Context <==> GramEventsHandler
    Context <==> MessageResolverHandler

    %% Event Handlers to Services
    AuthHandler --> AuthService
    MessageHandler --> MessageService
    DialogHandler --> DialogService
    StorageHandler --> StorageService
    ConfigHandler --> ConfigService
    EntityHandler --> EntityService
    GramEventsHandler --> ConnectionService
    MessageResolverHandler --> MsgResolverService

    %% Message Processing Pipeline
    MessageService --> MsgResolverService
    MsgResolverService --> EmbeddingResolver
    MsgResolverService --> JiebaResolver
    MsgResolverService --> LinkResolver
    MsgResolverService --> MediaResolver
    MsgResolverService --> UserResolver

    %% Data Layer
    StorageService --> Drizzle
    Drizzle --> DB

    %% External APIs
    AuthService --> TelegramAPI
    MessageService --> TelegramAPI
    DialogService --> TelegramAPI
    EntityService --> TelegramAPI
    EmbeddingResolver --> OpenAI

    %% Client Event System
    Frontend --> ClientAuth
    Frontend --> ClientMessage
    Frontend --> ClientStorage
    Frontend --> ClientEntity
    Frontend --> ClientServer

    %% Styling
    classDef frontend fill:#4CAF50,stroke:#2E7D32,color:#fff,stroke-width:2px
    classDef websocket fill:#FF9800,stroke:#E65100,color:#fff,stroke-width:3px
    classDef server fill:#2196F3,stroke:#1565C0,color:#fff,stroke-width:2px
    classDef context fill:#E91E63,stroke:#AD1457,color:#fff,stroke-width:4px
    classDef handler fill:#9C27B0,stroke:#6A1B9A,color:#fff,stroke-width:2px
    classDef service fill:#607D8B,stroke:#37474F,color:#fff,stroke-width:2px
    classDef resolver fill:#795548,stroke:#3E2723,color:#fff,stroke-width:2px
    classDef data fill:#3F51B5,stroke:#1A237E,color:#fff,stroke-width:2px
    classDef external fill:#F44336,stroke:#C62828,color:#fff,stroke-width:2px

    class Frontend,Electron,ClientAuth,ClientMessage,ClientStorage,ClientEntity,ClientServer frontend
    class WS websocket
    class Server,SessionMgr server
    class Context context
    class AuthHandler,MessageHandler,DialogHandler,StorageHandler,ConfigHandler,EntityHandler,GramEventsHandler,MessageResolverHandler handler
    class AuthService,MessageService,DialogService,StorageService,ConfigService,EntityService,ConnectionService,TakeoutService,MsgResolverService service
    class EmbeddingResolver,JiebaResolver,LinkResolver,MediaResolver,UserResolver resolver
    class DB,Drizzle data
    class TelegramAPI,OpenAI external
Loading

Event-Driven Architecture Overview

  • 🎯 CoreContext - Central Event Bus: The heart of the system using EventEmitter3 for managing all events

    • ToCoreEvent: Events sent to the core system (auth:login, message:query, etc.)
    • FromCoreEvent: Events emitted from core system (message:data, auth:status, etc.)
    • Event Wrapping: Automatic error handling and logging for all events
    • Session Management: Each client session gets its own CoreContext instance
  • 🌐 WebSocket Event Bridge: Real-time bidirectional communication layer

    • Event Registration: Clients register for specific events they want to receive
    • Event Forwarding: Seamlessly forwards events between frontend and CoreContext
    • Session Persistence: Maintains client state and event listeners across connections
  • 🔄 Message Processing Pipeline: Stream-based message processing through multiple resolvers

    • Embedding Resolver: Generates vector embeddings using OpenAI for semantic search
    • Jieba Resolver: Chinese word segmentation for better search capabilities
    • Link/Media/User Resolvers: Extract and process various message content types
  • 📡 Event Flow:

    1. Frontend emits events via WebSocket (e.g., auth:login, message:query)
    2. Server forwards events to appropriate CoreContext instance
    3. Event handlers process events and call corresponding services
    4. Services emit result events back through CoreContext
    5. WebSocket forwards events to frontend for real-time updates

🚀 Activity

Alt

Star History Chart

About

🔍 A powerful Telegram chat search tool with vector search and semantic matching capabilities.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Sponsor this project

 

Packages

 
 
 

Contributors 31

Languages