Below is the regenerated and neatly formatted README.md file:
# SYNINT OSINT Framework
SYNINT is a modular, stealth-optimized Open-Source Intelligence (OSINT) framework designed to
integrate multiple agents for comprehensive data gathering, analysis, and threat intelligence.
The system is self-contained, does not rely on external APIs, and emphasizes minimal network
noise and low resource usage.
---
## Table of Contents
- [Features](#features)
- [Directory Structure](#directory-structure)
- [Installation](#installation)
- [Usage](#usage)
- [Agents Overview](#agents-overview)
- [Extending the Framework](#extending-the-framework)
- [Testing](#testing)
- [License](#license)
---
## Features
- **Modular Architecture:**
Every agent inherits from a common abstract base class (`OSINTAgent`) defined in `agents/base_agent.py`
and implements a standard `run(target)` method. This design enables easy integration of new agents.
- **Stealth and Efficiency:**
The framework minimizes external API calls and network noise by performing all operations locally. It
utilizes optimized algorithms and minimal logging to remain unobtrusive.
- **Parallel Execution:**
Agents are executed concurrently through the `AgentManager` (located in `agent_manager.py`) using
Python’s `ThreadPoolExecutor`, reducing overall processing time.
- **Self-Contained:**
The system does not depend on external APIs. All intelligence is derived using local computations
(e.g., ML-based anomaly detection, graph analysis, Fourier transforms).
---
## 📂 Project Structure
The following is the directory structure of **SYNINT**:
```plaintext
SYNINT/
│── README.MD
│── agent_manager.py
│── main.py
│── requirements.txt
│
├── agents/
│ ├── __init__.py
│ ├── base_agent.py
│ ├── cybint_agent.py
│ ├── ids_agent.py
│ ├── mitm_agent.py
│ ├── siem_agent.py
│ ├── social_media_agent.py
│ ├── techint_agent.py
│ ├── threat_analyzer_agent.py
│ └── whois_agent.py
---
## Installation
1. **Clone the Repository:**
```bash
git clone https://github.com/yourusername/SYNINT.git
cd SYNINT
-
Create a Virtual Environment (Recommended):
python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install Dependencies:
pip install -r requirements.txt
The
requirements.txt
file includes required packages such as:requests
numpy
scikit-learn
networkx
opencv-python
scipy
You can run the framework as a whole or execute individual agents. The AgentManager
(located in the root-level agent_manager.py
) orchestrates the agents.
In your main.py
file, you might have code similar to the following:
#!/usr/bin/env python3
import json
import sys
# Import AgentManager from the root-level file
from agent_manager import AgentManager
# Import agent classes from the agents package
from agents.cybint_agent import CybintAgent
from agents.social_media_agent import SocialMediaAgent
from agents.whois_agent import WhoisAgent
from agents.ids_agent import IDSAgent
from agents.mitm_agent import MITMAgent
from agents.siem_agent import SIEMAgent
from agents.techint_agent import TechIntAgent
from agents.threat_analyzer_agent import ThreatAnalyzerAgent
def main():
if len(sys.argv) < 2:
print("Usage: python main.py <target>")
sys.exit(1)
target = sys.argv[1]
manager = AgentManager()
# Register all desired agents
manager.register_agent(CybintAgent())
manager.register_agent(SocialMediaAgent())
manager.register_agent(WhoisAgent())
manager.register_agent(IDSAgent())
manager.register_agent(MITMAgent())
manager.register_agent(SIEMAgent())
manager.register_agent(TechIntAgent())
manager.register_agent(ThreatAnalyzerAgent())
# Run all agents on the target
results = manager.run_all(target)
print(json.dumps(results, indent=4))
if __name__ == "__main__":
main()
For example, to run the IDSAgent on a string of IDS log entries:
from agent_manager import AgentManager
from agents.ids_agent import IDSAgent
manager = AgentManager()
manager.register_agent(IDSAgent())
ids_logs = """2021-01-01 12:00:00 Failed login from 10.0.0.5
2021-01-01 12:05:00 Successful login from 10.0.0.5"""
result = manager.run_agent("IDSAgent", ids_logs)
print(result)
- SocialMediaAgent: Searches popular social media platforms (Twitter, Facebook, LinkedIn) for a specified username.
- WhoisAgent: Performs a WHOIS lookup for a target domain or IP by invoking the system's
whois
command. - CybintAgent: Scans a target for vulnerabilities using heuristic algorithms (resolves domain to IP and computes a pseudo intelligence score).
- IDSAgent: Detects anomalies in IDS logs using a combination of machine learning techniques (IsolationForest, LOF, and One-Class SVM).
- MITMAgent: Analyzes network logs to detect potential Man-in-the-Middle nodes using graph centrality measures.
- SIEMAgent: Clusters SIEM log events via TF-IDF, SVD, and agglomerative clustering to reveal patterns.
- TechIntAgent: Assesses technical indicators (or images) to compute risk scores using mathematical functions.
- ThreatAnalyzerAgent: Aggregates various threat indicators to compute an overall risk score and highlight high-risk items. ...MORE COMING SOON!!!
To add a new agent:
- Create a new file (e.g.,
xxxx_agent.py
) in theagents/
directory. - Inherit from
OSINTAgent
(imported fromagents/base_agent.py
). - Implement the
run(target)
method with your agent’s specific logic. - Register your new agent in your main script or within the AgentManager.
Each agent gracefully handles incorrect input by returning an error message in its output dictionary. You can write unit tests for each agent, or run manual tests using the command line. For example:
python -m unittest discover tests
(Create a tests/
directory with test cases for each agent if you wish to automate testing.)
This project is licensed under the MIT License.