Skip to content

Firstly, multiple effective factors are discovered through IC value, IR value, and correlation analysis and back-testing. Then, XGBoost classification model is adopted to predict whether the stock is profitable in the next month, and the positions are adjusted monthly. The idea of mean-variance analysis is adopted for risk control, and the volat…

Notifications You must be signed in to change notification settings

guideshiny/Quantitative-Trading-Strategy-Based-on-Machine-Learning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Quantitative-Trading-Strategy-Based-on-Machine-Learning

Firstly, multiple effective factors are discovered through IC value, IR value, and correlation analysis and back-testing. Then, XGBoost classification model is adopted to predict whether the stock is profitable in the next month, and the positions are adjusted monthly. The idea of mean-variance analysis is adopted for risk control, and the volatility of the statistical benchmark index (HS300 Index) is used as a threshold for risk control. Back-testing results: the annual return rate is 11.54%, and the maximum drawdown is 17.91%.

  1. Factors Extracting

image

  1. Single Factor Testing

image image image

  1. XGBOOST Backtesting

image

  1. Out-of-sample Performance

image

image

About

Firstly, multiple effective factors are discovered through IC value, IR value, and correlation analysis and back-testing. Then, XGBoost classification model is adopted to predict whether the stock is profitable in the next month, and the positions are adjusted monthly. The idea of mean-variance analysis is adopted for risk control, and the volat…

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%