A nice collection of free #GIS data sources "10 ๐ ๐ซ๐๐ ๐๐๐ ๐๐๐ญ๐ ๐๐จ๐ฎ๐ซ๐๐๐ฌ: ๐๐๐ฌ๐ญ ๐๐ฅ๐จ๐๐๐ฅ ๐๐๐ฌ๐ญ๐๐ซ ๐๐ง๐ ๐๐๐๐ญ๐จ๐ซ ๐๐๐ญ๐๐ฌ๐๐ญ๐ฌ":
- ๐๐๐ญ๐ฎ๐ซ๐๐ฅ ๐๐๐ซ๐ญ๐ก ๐๐๐ญ๐: https://lnkd.in/diZSdcKt
- ๐๐๐๐ ๐๐๐ซ๐ญ๐ก ๐๐ฑ๐ฉ๐ฅ๐จ๐ซ๐๐ซ: https://lnkd.in/daNe97jE
- ๐๐ฉ๐๐ง๐๐ญ๐ซ๐๐๐ญ๐๐๐ฉ: https://lnkd.in/dRECBK7q
- ๐๐ฌ๐ซ๐ข ๐๐ฉ๐๐ง ๐๐๐ญ๐ ๐๐ฎ๐: https://hub.arcgis.com/
- ๐๐๐๐โ๐ฌ ๐๐จ๐๐ข๐จ๐๐๐จ๐ง๐จ๐ฆ๐ข๐ ๐๐๐ญ๐ ๐๐ง๐ ๐๐ฉ๐ฉ๐ฅ๐ข๐๐๐ญ๐ข๐จ๐ง๐ฌ ๐๐๐ง๐ญ๐๐ซ (๐๐๐๐๐): https://lnkd.in/d3YfbMiP
- ๐๐ฉ๐๐ง ๐๐จ๐ฉ๐จ๐ ๐ซ๐๐ฉ๐ก๐ฒ: https://opentopography.org
- ๐๐๐๐ ๐๐ง๐ฏ๐ข๐ซ๐จ๐ง๐ฆ๐๐ง๐ญ๐๐ฅ ๐๐๐ญ๐ ๐๐ฑ๐ฉ๐ฅ๐จ๐ซ๐๐ซ: https://lnkd.in/dXN9gMgD
- ๐๐๐๐ ๐๐๐ซ๐ญ๐ก ๐๐๐ฌ๐๐ซ๐ฏ๐๐ญ๐ข๐จ๐ง๐ฌ (๐๐๐): https://neo.gsfc.nasa.gov
- ๐๐๐ง๐ญ๐ข๐ง๐๐ฅ ๐๐๐ญ๐๐ฅ๐ฅ๐ข๐ญ๐ ๐๐๐ญ๐: https://lnkd.in/dJmAy47y
- ๐๐๐ซ๐ซ๐ ๐๐จ๐ฉ๐ฎ๐ฅ๐ฎ๐ฌ: https://terra.ipums.org
๐๐๐๐ ๐ญ๐ก๐ ๐๐ฎ๐ฅ๐ฅ ๐๐ซ๐ญ๐ข๐๐ฅ๐ ๐ก๐๐ซ๐: https://lnkd.in/dFbCFwcK
๐๐จ๐จ๐ฅ๐ฌ ๐ญ๐จ ๐ฆ๐๐ข๐ง๐ฅ๐ฒ ๐ฏ๐ข๐ฌ๐ฎ๐๐ฅ๐ข๐ณ๐ ๐ง๐๐ญ๐ฐ๐จ๐ซ๐ค๐ฌ:
- Geph - https://gephi.org
- Gephisto- https://lnkd.in/diSp3BWN
- VOSviewer - https://www.vosviewer.com
- Cytoscape - https://cytoscape.org
- Kumu - https://kumu.io
- GraphInsight - https://lnkd.in/d5XnkWJr
- NodeXL - https://nodexl.com
- Orange - https://lnkd.in/dZU8Zx3D
- Graphia - https://graphia.app
- Graphistry - https://www.graphistry.com
- SocNetV - https://socnetv.org
- Tulip - https://lnkd.in/dtc_BD33
๐๐๐ญ๐ฐ๐จ๐ซ๐ค ๐ฅ๐ข๐๐ซ๐๐ซ๐ข๐๐ฌ ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง:
- networkx - https://lnkd.in/dKCCXjif
- graphviz - https://lnkd.in/dtrTeqRv
- pydot - https://lnkd.in/dA46YZvy
- python-igraph - https://lnkd.in/dCGsRXh2
- pyvis - https://lnkd.in/dVrQ64nN
- ipycytoscape - https://lnkd.in/d-hJjDdG
- pygsp - https://lnkd.in/dS7s-A_v
- graph-tool - https://lnkd.in/dvytUzdu
- nxviz - https://lnkd.in/duHbKGPN
- py2cytoscape - https://lnkd.in/dWUU8TZH
- ipydagred3 - https://lnkd.in/diXgFWMD
- ipysigma - https://lnkd.in/dP55J5et
- Py3Plex - https://lnkd.in/dhwe7f_g
- net wulf - https://lnkd.in/dxrHAm2P
-
Extracting building footprints Instance Segmentation Models: MaskRCNN
-
Identifying new construction Change Detection Models: STA-Net ChangeDetector
-
Classifying homes as damaged or not after a forest fire Object Classification Models: FeatureClassifier with ResNet, Inception, VGG backbones
-
Detecting swimming pools Object Detection Models: SingleShotDetector(SSD), RetinaNet, YOLO, FasterRCNN, MMDetection
-
Road extraction Road Extraction Models: MultiTaskRoadExtractor
-
Crop Classification Imagery Time Series Classification Models: PSETAE
-
Land cover classification Pixel Classification Models: UNetClassifier, PSPNetClassifier, DeepLab, MMSegmentation
-
Mapping residential parcels Edge Detection Models: BDCNEdgeDetector, HEDEdgeDetector, ConnectNet
-
Increasing (upscaling) image resolution Image Enhancement Models: SuperResolution
How to start?
- Prepear your input imagery data, and generate true-ortho with ArcGIS Reality for best accuracy.
- ArcGIS API for Python + arcgis.learn module - Functions for calling the Deep Learning Tools https://lnkd.in/dCfsifZh
- Explore and test pre-trained models - ArcGIS Living Atlas https://lnkd.in/dQsE5FXp
- Use ArcGIS tools to improve or train your own models (see guide in each DLPK)
- Build own Apps & Solutions