A server implementation that supports both Qdrant and Chroma vector databases for storing and retrieving domain knowledge.
- Support for both Qdrant and Chroma vector databases
- Configurable database selection via environment variables
- Uses Qdrant's built-in FastEmbed for efficient embedding generation
- Domain knowledge storage and retrieval
- Documentation file storage with metadata
- Support for PDF and TXT file formats
- Node.js 20.x or later (LTS recommended)
- npm 10.x or later
- Qdrant or Chroma vector database
- Clone the repository:
git clone <repository-url>
cd qdrant-mcp-server
- Install dependencies:
npm install
- Create a
.env
file in the root directory based on the.env.example
template:
cp .env.example .env
- Update the
.env
file with your own settings:
DATABASE_TYPE=qdrant
QDRANT_URL=https://your-qdrant-instance.example.com:6333
QDRANT_API_KEY=your_api_key
COLLECTION_NAME=your_collection_name
- Build the project:
npm run build
Create the script run-cursor-mcp.sh
in the project root:
#!/bin/zsh
cd /path/to/your/project
source ~/.zshrc
nvm use --lts
# Let the app load environment variables from .env file
node dist/index.js
Make the script executable:
chmod +x run-cursor-mcp.sh
Add this configuration to your ~/.cursor/mcp.json
or .cursor/mcp.json
file:
{
"mcpServers": {
"qdrant-retrieval": {
"command": "/path/to/your/project/run-cursor-mcp.sh",
"args": []
}
}
}
Add this configuration in Claude's settings:
{
"processes": {
"knowledge_server": {
"command": "/path/to/your/project/run-cursor-mcp.sh",
"args": []
}
},
"tools": [
{
"name": "store_knowledge",
"description": "Store domain-specific knowledge in a vector database",
"provider": "process",
"process": "knowledge_server"
},
{
"name": "retrieve_knowledge_context",
"description": "Retrieve relevant domain knowledge from a vector database",
"provider": "process",
"process": "knowledge_server"
}
]
}
npm start
For development with auto-reload:
npm run dev
The server includes a script to store documentation files (PDF and TXT) with metadata:
npm run store-doc <path-to-your-file>
Example:
# Store a PDF file
npm run store-doc docs/manual.pdf
# Store a text file
npm run store-doc docs/readme.txt
The script will:
- Extract content from the file (text from PDF or plain text)
- Store the content with metadata including:
- Source: "documentation"
- File name and extension
- File size
- Last modified date
- Creation date
- Content type
POST /api/store
Content-Type: application/json
{
"content": "Your domain knowledge content here",
"source": "your-source",
"metadata": {
"key": "value"
}
}
POST /api/query
Content-Type: application/json
{
"query": "Your search query here",
"limit": 5
}
npm test
npm run build
npm run lint
src/
├── core/
│ ├── db-service.ts # Database service implementation
│ └── embedding-utils.ts # Embedding utilities
├── scripts/
│ └── store-documentation.ts # Documentation storage script
└── index.ts # Main server file
When using with a remote Qdrant instance (like Qdrant Cloud):
- Ensure your
.env
has the correct URL with port number:
QDRANT_URL=https://your-instance-id.region.gcp.cloud.qdrant.io:6333
- Set your API key:
QDRANT_API_KEY=your_qdrant_api_key
This project uses Qdrant's built-in FastEmbed for efficient embedding generation:
- Lightweight and fast embedding generation
- Uses quantized model weights and ONNX Runtime for inference
- Better accuracy than OpenAI Ada-002 according to Qdrant
- No need for external embedding API keys
- The system connects to your Qdrant instance
- When generating embeddings, it uses Qdrant's server-side embedding endpoint
- This eliminates the need for external embedding APIs and simplifies the architecture
No additional configuration is needed as FastEmbed is built into Qdrant. Just ensure your Qdrant URL and API key are correctly set in your .env
file.
If you encounter issues:
- Make sure you're using Node.js LTS version (
nvm use --lts
) - Verify your environment variables are correct
- Check Qdrant/Chroma connectivity
- Ensure your Qdrant instance is properly configured
MIT