-
Notifications
You must be signed in to change notification settings - Fork 0
/
pred_deepAR.py
211 lines (173 loc) · 7.82 KB
/
pred_deepAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import torch.nn as nn
from model.deepAR import DeepAR
from util.param import LEARN, BATCH_SIZE, PATIENCE, EPOCH, SEQ_LEN, LABEL_LEN, PRED_LEN, ENCODER_IN, DECODER_IN, \
OUT_SIZE, OUTPUT_MODEL_PATH, FEATURES, DATASET, data_parser
from data_process.dataset_process import Process_Dataset
from torch.utils.data import DataLoader
from util.metrics import metric
import os
import time
import numpy as np
from datetime import datetime
DEVICE = torch.device('cuda:0')
LOG_FILE = None
def get_data(flag='train', dataset='ETTh1'):
process = Process_Dataset(dataset=dataset, seq_len=SEQ_LEN,
label_len=LABEL_LEN, pred_len=PRED_LEN, features=FEATURES,
target=data_parser[dataset]['T'], cols=None, freq='h',
timeenc=0, inverse=False, batch_size=BATCH_SIZE, )
return process.get_data(flag)
def get_loss_fun(LOSS='MSE'):
criterion = None
if LOSS == 'MSE':
criterion = nn.MSELoss()
if LOSS == 'MAE':
criterion = nn.L1Loss()
return criterion
def get_optimizer(model, OPTIMIZER='Adam'):
optimizer = None
if OPTIMIZER == 'RMSprop':
optimizer = torch.optim.RMSprop(model.parameters(), lr=LEARN)
if OPTIMIZER == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=LEARN)
return optimizer
def get_model():
model = DeepAR(sql_len=SEQ_LEN, pred_len=PRED_LEN, input_size=ENCODER_IN, output_size=DECODER_IN, hidden_size=2,
num_layers=2, device=DEVICE)
return model
def vali(model, vali_data, vali_loader, criterion):
model.eval()
total_loss = []
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(vali_loader):
pred, true = _process_one_batch(
model, batch_x, batch_y, batch_x_mark, batch_y_mark)
loss = criterion(pred.detach().cpu(), true.detach().cpu())
total_loss.append(loss)
total_loss = np.average(total_loss)
model.train()
return total_loss
def train(model):
train_data, train_loader = get_data(flag='train', dataset=DATASET)
vali_data, vali_loader = get_data(flag='val', dataset=DATASET)
test_data, test_loader = get_data(flag='test', dataset=DATASET)
save_path = OUTPUT_MODEL_PATH + "/" + model.name
if not os.path.exists(save_path):
os.makedirs(save_path)
time_now = datetime.now().strftime("%Y_%m_%d_%H,%M,%S")
log_file_name = save_path + "/" + model.name + "_" + time_now + "_log.txt"
log_file = open(log_file_name, "w")
global LOG_FILE
LOG_FILE = log_file
model_file_name = save_path + "/" + model.name + "_" + time_now + ".pt"
train_steps = len(train_loader)
print('Model Training Started ...', time_now)
print('Model Training Started ...', time_now, file=log_file)
wait = 0
min_val_loss = np.inf
loss_func = get_loss_fun("MSE")
criterion_func = get_loss_fun("MSE")
print("loss function is MSE")
print("loss function is MSE", file=log_file)
opt = get_optimizer(model)
for epoch in range(EPOCH):
start_time = datetime.now()
iter_count = 0
train_loss = []
model.train()
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader):
iter_count += 1
opt.zero_grad()
pred, true = _process_one_batch(model, batch_x, batch_y, batch_x_mark, batch_y_mark)
loss = loss_func(pred, true)
train_loss.append(loss.item())
loss.backward()
opt.step()
end_time = datetime.now()
print("Epoch: {} cost time: {} s".format(epoch + 1, (end_time - start_time).seconds))
print("Epoch: {} cost time: {} s".format(epoch + 1, (end_time - start_time).seconds), file=log_file)
train_loss = np.average(train_loss)
vali_loss = vali(model, vali_data, vali_loader, criterion_func)
test_loss = vali(model, test_data, test_loader, criterion_func)
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
epoch + 1, train_steps, train_loss, vali_loss, test_loss))
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
epoch + 1, train_steps, train_loss, vali_loss, test_loss), file=log_file)
if vali_loss < min_val_loss:
wait = 0
min_val_loss = vali_loss
torch.save(model.state_dict(), model_file_name)
else:
wait += 1
if wait == PATIENCE:
print('Early stopping at epoch: {}'.format(epoch + 1))
print('Early stopping at epoch: {}'.format(epoch + 1), file=log_file)
break
model.load_state_dict(torch.load(model_file_name))
print('Model Training Ended ...', time.ctime(), file=log_file)
print('Model Training Ended ...', time.ctime())
return model
def test(model):
test_data, test_loader = get_data(flag='test', dataset=DATASET)
print("Model Testing Started ...", datetime.now().strftime("%Y_%m_%d_%H,%M,%S"))
print("Model Testing Started ...", datetime.now().strftime("%Y_%m_%d_%H,%M,%S"), file=LOG_FILE)
model.eval()
preds = []
trues = []
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(test_loader):
pred, true = _process_one_batch(
model, batch_x, batch_y, batch_x_mark, batch_y_mark)
preds.append(pred.detach().cpu().numpy())
trues.append(true.detach().cpu().numpy())
preds = np.array(preds)
trues = np.array(trues)
print('test shape:', preds.shape, trues.shape)
preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1])
trues = trues.reshape(-1, trues.shape[-2], trues.shape[-1])
print('test shape:', preds.shape, trues.shape)
save_path = OUTPUT_MODEL_PATH + "/" + model.name
save_path = save_path + "/" + "test_result"
if not os.path.exists(save_path):
os.makedirs(save_path)
# result save
mae, mse, rmse, mape, mspe = metric(preds, trues)
print('mse:{}, mae:{}, rmse:{}, mape:{}'.format(mse, mae, rmse, mape))
print('mse:{}, mae:{}, rmse:{}, mape:{}'.format(mse, mae, rmse, mape), file=LOG_FILE)
np.save(save_path + '/metrics.npy', np.array([mae, mse, rmse, mape, mspe]))
np.save(save_path + '/pred.npy', preds)
np.save(save_path + '/true.npy', trues)
print("Model Testing Ended ...", datetime.now().strftime("%Y_%m_%d_%H,%M,%S"))
print("Model Testing Ended ...", datetime.now().strftime("%Y_%m_%d_%H,%M,%S"), file=LOG_FILE)
return
def predict(model):
pred_data, pred_loader = get_data(flag='pred')
model.eval()
preds = []
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(pred_loader):
pred, true = _process_one_batch(
pred_data, batch_x, batch_y, batch_x_mark, batch_y_mark)
preds.append(pred.detach().cpu().numpy())
preds = np.array(preds)
preds = preds.reshape(-1, preds.shape[-2], preds.shape[-1])
save_path = OUTPUT_MODEL_PATH + "/" + model.name
save_path = save_path + "/" + "pred_result"
if not os.path.exists(save_path):
os.makedirs(save_path)
# result save
np.save(save_path + '/real_prediction.npy', preds)
return
def _process_one_batch(model, batch_x, batch_y, batch_x_mark, batch_y_mark):
batch_x = batch_x.float().to(DEVICE)
batch_y = batch_y.float()
batch_x_mark = batch_x_mark.float().to(DEVICE)
batch_y_mark = batch_y_mark.float().to(DEVICE)
dec_inp = torch.zeros([batch_y.shape[0], PRED_LEN, batch_y.shape[-1]]).float()
dec_inp = torch.cat([batch_y[:, :LABEL_LEN, :], dec_inp], dim=1).float().to(DEVICE)
outputs = model(batch_x)
batch_y = batch_y[:, -PRED_LEN:, 0:].to(DEVICE)
return outputs, batch_y
if __name__ == '__main__':
informer = get_model()
best_model = train(informer)
test(best_model)
torch.cuda.empty_cache()