SCLformer for LSTF problem
SCLformer is short for Self-adaptive Convolution Linear Transformer. It is a transformer-based model for LSTF problem. The model is based on the paper. The model is implemented by Pytorch.
Dataset can be downloaded from here.
The result of SCLformer is shown as follows:
Multivariable condition:
Methods | SCLformer | Informer | LSTM | ARMA | DeepAR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
ETTh1 | 96 | 0.903 | 0.73 | 0.906 | 0.746 | 1.201 | 0.861 | 0.846 | 0.607 | 0.833 | 0.701 |
192 | 1.024 | 0.797 | 0.843 | 0.694 | 1.23 | 0.831 | 0.861 | 0.62 | 0.939 | 0.749 | |
336 | 0.999 | 0.785 | 1.157 | 0.849 | 1.292 | 0.921 | 0.875 | 0.635 | 1.088 | 0.785 | |
720 | 1.065 | 0.835 | 1.231 | 0.887 | 1.126 | 0.839 | 0.884 | 0.653 | 1.078 | 0.846 | |
ETTh2 | 96 | 1.767 | 1.097 | 2.723 | 1.404 | 2.193 | 1.179 | 3.154 | 1.353 | 2.283 | 1.196 |
192 | 3.516 | 1.605 | 5.904 | 2.11 | 3.236 | 1.402 | 3.166 | 1.357 | 3.355 | 1.565 | |
336 | 3.56 | 1.586 | 3.511 | 1.553 | 2.533 | 1.274 | 3.149 | 1.351 | 2.681 | 1.405 | |
720 | 4.232 | 1.762 | 3.283 | 1.56 | 3.498 | 1.552 | 3.113 | 1.342 | 3.049 | 1.333 | |
ETTm1 | 96 | 0.655 | 0.585 | 0.556 | 0.529 | 1.124 | 0.8222 | 0.865 | 0.619 | 0.779 | 0.701 |
192 | 0.697 | 0.631 | 0.872 | 0.69 | 1.261 | 0.898 | 0.871 | 0.621 | 0.805 | 0.712 | |
336 | 0.865 | 0.715 | 0.933 | 0.739 | 1.14 | 0.843 | 0.882 | 0.631 | 0.83 | 0.724 | |
720 | 0.927 | 0.751 | 0.918 | 0.732 | 1.184 | 0.869 | 0.899 | 0.644 | 0.889 | 0.75 | |
ETTm2 | 96 | 0.696 | 0.607 | 0.539 | 0.522 | 1.134 | 0.887 | 3.121 | 1.343 | 1.026 | 0.816 |
192 | 1.083 | 0.753 | 1.05 | 0.769 | 2.366 | 1.299 | 3.128 | 1.346 | 1.498 | 0.952 | |
336 | 0.885 | 0.726 | 1.451 | 0.935 | 2.612 | 1.321 | 3.142 | 1.349 | 1.997 | 1.136 | |
720 | 1.835 | 1.042 | 2.441 | 1.172 | 3.127 | 1.508 | 3.152 | 1.352 | 2.368 | 1.212 | |
Weather | 96 | 0.755 | 0.665 | 0.488 | 0.497 | 0.554 | 0.548 | 0.618 | 0.557 | 0.487 | 0.5 |
192 | 0.795 | 0.687 | 0.581 | 0.552 | 0.604 | 0.581 | 0.642 | 0.579 | 0.528 | 0.532 | |
336 | 0.676 | 0.613 | 0.604 | 0.571 | 0.617 | 0.589 | 0.647 | 0.588 | 0.546 | 0.547 | |
720 | 0.746 | 0.648 | 0.614 | 0.583 | 0.652 | 0.61 | 0.672 | 0.61 | 0.638 | 0.603 | |
ECL | 96 | 0.336 | 0.404 | 0.303 | 0.395 | 1.013 | 0.837 | 0.584 | 0.572 | 0.53 | 0.541 |
192 | 0.311 | 0.39 | 0.291 | 0.378 | 0.932 | 0.793 | 0.582 | 0.574 | 0.492 | 0.522 | |
336 | 0.306 | 0.387 | 0.302 | 0.392 | 0.962 | 0.801 | 0.586 | 0.582 | 0.488 | 0.522 | |
720 | 0.314 | 0.395 | 0.381 | 0.447 | 0.953 | 0.804 | 0.603 | 0.599 | 0.505 | 0.514 |
Singlevariable condition:
Methods | SCLformer | Informer | LSTM | ARMA | DeepAR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
ETTh1 | 96 | 0.903 | 0.73 | 0.906 | 0.746 | 1.201 | 0.861 | 0.846 | 0.607 | 0.833 | 0.701 |
192 | 1.024 | 0.797 | 0.843 | 0.694 | 1.23 | 0.831 | 0.861 | 0.62 | 0.939 | 0.749 | |
336 | 0.999 | 0.785 | 1.157 | 0.849 | 1.292 | 0.921 | 0.875 | 0.635 | 1.088 | 0.785 | |
720 | 1.065 | 0.835 | 1.231 | 0.887 | 1.126 | 0.839 | 0.884 | 0.653 | 1.078 | 0.846 | |
ETTh2 | 96 | 1.767 | 1.097 | 2.723 | 1.404 | 2.193 | 1.179 | 3.154 | 1.353 | 2.283 | 1.196 |
192 | 3.516 | 1.605 | 5.904 | 2.11 | 3.236 | 1.402 | 3.166 | 1.357 | 3.355 | 1.565 | |
336 | 3.56 | 1.586 | 3.511 | 1.553 | 2.533 | 1.274 | 3.149 | 1.351 | 2.681 | 1.405 | |
720 | 4.232 | 1.762 | 3.283 | 1.56 | 3.498 | 1.552 | 3.113 | 1.342 | 3.049 | 1.333 | |
ETTm1 | 96 | 0.655 | 0.585 | 0.556 | 0.529 | 1.124 | 0.8222 | 0.865 | 0.619 | 0.779 | 0.701 |
192 | 0.697 | 0.631 | 0.872 | 0.69 | 1.261 | 0.898 | 0.871 | 0.621 | 0.805 | 0.712 | |
336 | 0.865 | 0.715 | 0.933 | 0.739 | 1.14 | 0.843 | 0.882 | 0.631 | 0.83 | 0.724 | |
720 | 0.927 | 0.751 | 0.918 | 0.732 | 1.184 | 0.869 | 0.899 | 0.644 | 0.889 | 0.75 | |
ETTm2 | 96 | 0.696 | 0.607 | 0.539 | 0.522 | 1.134 | 0.887 | 3.121 | 1.343 | 1.026 | 0.816 |
192 | 1.083 | 0.753 | 1.05 | 0.769 | 2.366 | 1.299 | 3.128 | 1.346 | 1.498 | 0.952 | |
336 | 0.885 | 0.726 | 1.451 | 0.935 | 2.612 | 1.321 | 3.142 | 1.349 | 1.997 | 1.136 | |
720 | 1.835 | 1.042 | 2.441 | 1.172 | 3.127 | 1.508 | 3.152 | 1.352 | 2.368 | 1.212 | |
Weather | 96 | 0.755 | 0.665 | 0.488 | 0.497 | 0.554 | 0.548 | 0.618 | 0.557 | 0.487 | 0.5 |
192 | 0.795 | 0.687 | 0.581 | 0.552 | 0.604 | 0.581 | 0.642 | 0.579 | 0.528 | 0.532 | |
336 | 0.676 | 0.613 | 0.604 | 0.571 | 0.617 | 0.589 | 0.647 | 0.588 | 0.546 | 0.547 | |
720 | 0.746 | 0.648 | 0.614 | 0.583 | 0.652 | 0.61 | 0.672 | 0.61 | 0.638 | 0.603 | |
ECL | 96 | 0.336 | 0.404 | 0.303 | 0.395 | 1.013 | 0.837 | 0.584 | 0.572 | 0.53 | 0.541 |
192 | 0.311 | 0.39 | 0.291 | 0.378 | 0.932 | 0.793 | 0.582 | 0.574 | 0.492 | 0.522 | |
336 | 0.306 | 0.387 | 0.302 | 0.392 | 0.962 | 0.801 | 0.586 | 0.582 | 0.488 | 0.522 | |
720 | 0.314 | 0.395 | 0.381 | 0.447 | 0.953 | 0.804 | 0.603 | 0.599 | 0.505 | 0.514 |
More info are shown in the paper