Skip to content

Commit

Permalink
integrate
Browse files Browse the repository at this point in the history
Merge branch 'master' of github.com:harlananelson/timeseries
  • Loading branch information
harlananelson committed Apr 9, 2018
2 parents fcb4207 + b1d3b0a commit c33ec4f
Showing 1 changed file with 103 additions and 5 deletions.
108 changes: 103 additions & 5 deletions class_3.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -82,9 +82,15 @@ Auto Regressive

Integrated
: The differences of an observation minus a prevous observations is modeled.
```{r}
install.packages('ggfortify')
install.packages('sweep')
```

```{r}
library(tidyquant)
library(broom)
library(sweep)
library(forecast)
library(magrittr)
library(ggplot2)
Expand Down Expand Up @@ -137,23 +143,115 @@ The resolution of the simulated time series can be
Simulate a time series that is observed every day instead of every month using '2006//d'.
```{r}
set.seed(125)
l=2000
dates <-timeBasedSeq('2006//m',length=l)
parameters <- list(model=list(ar=c(0,0,0,0.8), ma=0.5),n=l)
l=10000
dates <-timeBasedSeq('20060204//m',length=l)
parameters <- list( model=list(ar=c(0,0,0,0.8), ma=c(0.5)), n=l)
y <- ts(do.call(arima.sim,parameters),frequency=4)
fit_y <- arima(y, order=c(0,0,1), seasonal=list(order=c(1,0,0)), include.mean=FALSE)
c(coef(fit_y), sigma2 = fit$sigma2)
c(coef(fit_y), sigma2 = fit_y$sigma2)
x <-xts(y,order.by = dates,descr="Simulated xts object")
colnames(x) <- c("rate")
attr(x,'frequency')
# Fit without the frequency. Seasonal adjustment will be wrong.
fit_auto <- auto.arima(x)
broom::tidy(fit_auto)
sweep::sw_tidy(fit_auto)
sweep::sw_tidy(x)
attr(x,'frequency') <-4
attr(x,'frequency')
fit_x <- arima(x, order=c(0,0,1), seasonal=list(order=c(1,0,0)),include.mean=FALSE)
c(coef(fit_x), sigma2 = fit_x$sigma2)
fit_auto <- auto.arima(x)
broom::tidy(fit_auto)
install.packages('tsdecomp')
library(tsdecomp)
roots.allocation(fit_auto)
```
Create a non stationary the needs one difference to stablize.
```{r}
set.seed(125)
l=10000
dates <-timeBasedSeq('20060204//m',length=l)
parameters <- list( model=list(order=c(12,1,3),ar=c(0,0,0,0,0,0,0,0,0,0,0,0.4), ma=c(0.5,0,.1)), n=l)
y <- ts(do.call(arima.sim,parameters),frequency=12)
fit_y <- arima(y, order=c(0,1,3), seasonal=list(order=c(1,0,0)), include.mean=FALSE)
c(coef(fit_y), sigma2 = fit_y$sigma2)
sweep::sw_tidy(fit_y)
sweep::sw_glance(fit_y)
x <-xts(y,order.by = dates,descr="Simulated xts object")
colnames(x) <- c("rate")
attr(x,'frequency')
# Fit without the frequency. Seasonal adjustment will be wrong.
fit_auto <- auto.arima(x)
broom::tidy(fit_auto)
sweep::sw_tidy(fit_auto)
sweep::sw_tidy(x)
attr(x,'frequency') <-4
attr(x,'frequency')
fit_x <- arima(x, order=c(0,0,1), seasonal=list(order=c(1,0,0)),include.mean=FALSE)
c(coef(fit_x), sigma2 = fit$sigma2)
c(coef(fit_x), sigma2 = fit_x$sigma2)
fit_auto <- auto.arima(x)
broom::tidy(fit_auto)
install.packages('tsdecomp')
library(tsdecomp)
roots.allocation(fit_auto)
```
```{r}
Acf(y)
```


```{r}
Pacf(y)
```
```{r}
Box.test(y,lag=5,type="Ljung-Box")
```
```{r}
tseries::adf.test(y,alternative="stationary")
```
```{r}
tseries::kpss.test(y)
```






```{r}
print(dates)
print(y_0)
print(y)
print(x)
1
```





















Expand Down

0 comments on commit c33ec4f

Please sign in to comment.