Skip to content

Commit

Permalink
Merge remote-tracking branch 'upstream/main' into dev
Browse files Browse the repository at this point in the history
  • Loading branch information
hbaghramyan committed Aug 6, 2024
2 parents 801238b + 70e5714 commit 4afea7d
Show file tree
Hide file tree
Showing 10 changed files with 3,584 additions and 15 deletions.
1 change: 1 addition & 0 deletions .github/workflows/basic-tests-windows.yml
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ jobs:
python -m pip install --upgrade pip
pip install pytest nbval
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
pip install matplotlib==3.9.0
- name: Test Selected Python Scripts
shell: bash
Expand Down
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,8 @@ ch07/01_main-chapter-code/instruction-data-with-response-alpaca52k.json
ch07/01_main-chapter-code/instruction-data-with-response-lora.json
ch07/01_main-chapter-code/instruction-data-with-response-phi3-prompt.json
ch07/02_dataset-utilities/instruction-examples-modified.json
ch07/04_preference-tuning-with-dpo/gpt2-medium355M-sft.pth
ch07/04_preference-tuning-with-dpo/loss-plot.pdf

# Temporary OS-related files
.DS_Store
Expand Down
12 changes: 8 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,9 @@ The method described in this book for training and developing your own small-but
- [Link to the book page on Amazon](https://www.amazon.com/gp/product/1633437167)
- ISBN 9781633437166

<a href="http://mng.bz/orYv#reviews"><img src="https://sebastianraschka.com//images/LLMs-from-scratch-images/other/reviews.png" width="220px"></a>


<br>
<br>

Expand Down Expand Up @@ -58,14 +61,14 @@ Alternatively, you can view this and other files on GitHub at [https://github.co

| Chapter Title | Main Code (for quick access) | All Code + Supplementary |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| [Setup recommendations](setup) | - | - |
| [Setup recommendations](setup) | - | - |
| Ch 1: Understanding Large Language Models | No code | - |
| Ch 2: Working with Text Data | - [ch02.ipynb](ch02/01_main-chapter-code/ch02.ipynb)<br/>- [dataloader.ipynb](ch02/01_main-chapter-code/dataloader.ipynb) (summary)<br/>- [exercise-solutions.ipynb](ch02/01_main-chapter-code/exercise-solutions.ipynb) | [./ch02](./ch02) |
| Ch 3: Coding Attention Mechanisms | - [ch03.ipynb](ch03/01_main-chapter-code/ch03.ipynb)<br/>- [multihead-attention.ipynb](ch03/01_main-chapter-code/multihead-attention.ipynb) (summary) <br/>- [exercise-solutions.ipynb](ch03/01_main-chapter-code/exercise-solutions.ipynb)| [./ch03](./ch03) |
| Ch 2: Working with Text Data | - [ch02.ipynb](ch02/01_main-chapter-code/ch02.ipynb)<br/>- [dataloader.ipynb](ch02/01_main-chapter-code/dataloader.ipynb) (summary)<br/>- [exercise-solutions.ipynb](ch02/01_main-chapter-code/exercise-solutions.ipynb) | [./ch02](./ch02) |
| Ch 3: Coding Attention Mechanisms | - [ch03.ipynb](ch03/01_main-chapter-code/ch03.ipynb)<br/>- [multihead-attention.ipynb](ch03/01_main-chapter-code/multihead-attention.ipynb) (summary) <br/>- [exercise-solutions.ipynb](ch03/01_main-chapter-code/exercise-solutions.ipynb)| [./ch03](./ch03) |
| Ch 4: Implementing a GPT Model from Scratch | - [ch04.ipynb](ch04/01_main-chapter-code/ch04.ipynb)<br/>- [gpt.py](ch04/01_main-chapter-code/gpt.py) (summary)<br/>- [exercise-solutions.ipynb](ch04/01_main-chapter-code/exercise-solutions.ipynb) | [./ch04](./ch04) |
| Ch 5: Pretraining on Unlabeled Data | - [ch05.ipynb](ch05/01_main-chapter-code/ch05.ipynb)<br/>- [gpt_train.py](ch05/01_main-chapter-code/gpt_train.py) (summary) <br/>- [gpt_generate.py](ch05/01_main-chapter-code/gpt_generate.py) (summary) <br/>- [exercise-solutions.ipynb](ch05/01_main-chapter-code/exercise-solutions.ipynb) | [./ch05](./ch05) |
| Ch 6: Finetuning for Text Classification | - [ch06.ipynb](ch06/01_main-chapter-code/ch06.ipynb) <br/>- [gpt_class_finetune.py](ch06/01_main-chapter-code/gpt_class_finetune.py) <br/>- [exercise-solutions.ipynb](ch06/01_main-chapter-code/exercise-solutions.ipynb) | [./ch06](./ch06) |
| Ch 7: Finetuning to Follow Instructions | - [ch07.ipynb](ch07/01_main-chapter-code/ch07.ipynb)<br/>- [gpt_instruction_finetuning.py](ch07/01_main-chapter-code/gpt_instruction_finetuning.py)<br/>- [ollama_evaluate.py](ch07/01_main-chapter-code/ollama_evaluate.py)<br/>- [exercise-solutions.ipynb](ch07/01_main-chapter-code/exercise-solutions.ipynb) | [./ch07](./ch07) |
| Ch 7: Finetuning to Follow Instructions | - [ch07.ipynb](ch07/01_main-chapter-code/ch07.ipynb)<br/>- [gpt_instruction_finetuning.py](ch07/01_main-chapter-code/gpt_instruction_finetuning.py) (summary)<br/>- [ollama_evaluate.py](ch07/01_main-chapter-code/ollama_evaluate.py) (summary)<br/>- [exercise-solutions.ipynb](ch07/01_main-chapter-code/exercise-solutions.ipynb) | [./ch07](./ch07) |
| Appendix A: Introduction to PyTorch | - [code-part1.ipynb](appendix-A/01_main-chapter-code/code-part1.ipynb)<br/>- [code-part2.ipynb](appendix-A/01_main-chapter-code/code-part2.ipynb)<br/>- [DDP-script.py](appendix-A/01_main-chapter-code/DDP-script.py)<br/>- [exercise-solutions.ipynb](appendix-A/01_main-chapter-code/exercise-solutions.ipynb) | [./appendix-A](./appendix-A) |
| Appendix B: References and Further Reading | No code | - |
| Appendix C: Exercise Solutions | No code | - |
Expand Down Expand Up @@ -118,6 +121,7 @@ Several folders contain optional materials as a bonus for interested readers:
- [Evaluating Instruction Responses Using the OpenAI API and Ollama](ch07/03_model-evaluation)
- [Generating a Dataset for Instruction Finetuning](ch07/05_dataset-generation)
- [Generating a Preference Dataset with Llama 3.1 70B and Ollama](ch07/04_preference-tuning-with-dpo/create-preference-data-ollama.ipynb)
- [Direct Preference Optimization (DPO) for LLM Alignment](ch07/04_preference-tuning-with-dpo/dpo-from-scratch.ipynb)

<br>
&nbsp
Expand Down
2 changes: 1 addition & 1 deletion ch05/01_main-chapter-code/ch05.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2406,7 +2406,7 @@
"id": "6d079f98-a7c4-462e-8416-5a64f670861c",
"metadata": {},
"source": [
"- We know that we loaded the model weights correctly because the model can generate coherent text; if we made even a small mistake, the mode would not be able to do that"
"- We know that we loaded the model weights correctly because the model can generate coherent text; if we made even a small mistake, the model would not be able to do that"
]
},
{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -259,7 +259,8 @@ def train_classifier_simple(model, train_loader, val_loader, optimizer, device,
loss.backward() # Calculate loss gradients

# Use gradient accumulation if accumulation_steps > 1
if batch_idx % accumulation_steps == 0:
is_update_step = ((batch_idx + 1) % accumulation_steps == 0) or ((batch_idx + 1) == len(train_loader))
if is_update_step:
optimizer.step() # Update model weights using loss gradients
optimizer.zero_grad() # Reset loss gradients from previous batch iteration

Expand Down
4 changes: 2 additions & 2 deletions ch07/01_main-chapter-code/ch07.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2722,7 +2722,7 @@
"- I hope you enjoyed this journey of implementing an LLM from the ground up and coding the pretraining and finetuning functions\n",
"- In my opinion, implementing an LLM from scratch is the best way to understand how LLMs work; I hope you gained a better understanding through this approach\n",
"- While this book serves educational purposes, you may be interested in using different and more powerful LLMs for real-world applications\n",
" - For this, you may consider popular tools such as axolotl ([https://github.com/OpenAccess-AI-Collective/axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)) or LitGPT ([https://github.com/Lightning-AI/litgpt](https://github.com/Lightning-AI/litgpt), which I help developing"
" - For this, you may consider popular tools such as axolotl ([https://github.com/OpenAccess-AI-Collective/axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)) or LitGPT ([https://github.com/Lightning-AI/litgpt](https://github.com/Lightning-AI/litgpt)), which I help developing"
]
},
{
Expand Down Expand Up @@ -2762,7 +2762,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.10.11"
}
},
"nbformat": 4,
Expand Down
7 changes: 1 addition & 6 deletions ch07/04_preference-tuning-with-dpo/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,6 @@

- [create-preference-data-ollama.ipynb](create-preference-data-ollama.ipynb): A notebook that creates a synthetic dataset for preference finetuning dataset using Llama 3.1 and Ollama

- In progress ...
- [dpo-from-scratch.ipynb](dpo-from-scratch.ipynb): This notebook implements Direct Preference Optimization (DPO) for LLM alignment



In the meantime, also see

- LLM Training: RLHF and Its Alternatives, [https://magazine.sebastianraschka.com/p/llm-training-rlhf-and-its-alternatives](https://magazine.sebastianraschka.com/p/llm-training-rlhf-and-its-alternatives)
- Tips for LLM Pretraining and Evaluating Reward Models, [https://sebastianraschka.com/blog/2024/research-papers-in-march-2024.html](https://sebastianraschka.com/blog/2024/research-papers-in-march-2024.html)
Loading

0 comments on commit 4afea7d

Please sign in to comment.