Inceptum ETL is a tool designed to facilitate the creation and management of Extract, Transform, Load (ETL) scripts.
Inceptum ETL is what we use at hipages for our internal projects.
In this project we're managing all the basics that are needed for an ETL project:
- Language: typescript
- Base: typescript base
- Supported technologies: Mysql, Postgres, Redis, and Elasticsearch
- Easy to extend
- Easy to upgrade
One of the most valuable features that comes with Inceptum based projects is the ability to easily upgrade to the newest Inceptum version with just a few simple git
commands. As we continue to refine our standard your projects benefit as well.
Inceptum-etl has been designed to follow the Extract, Transform, Load paradigm:
- To extract data we create "sources"
- To transform data we create "transformers"
- To load data we create "destinations"
Now the extra parts:
- "savepoints" add fault tolerance to the etl and manage the starting point
- "configuration" puts all the pieces together
- "runner" runs the ETL
- Adwords reports
- Adwords report historical data
- Google analytics transactions
- Google analytics landing pages
- MySQL data
- Simple copy
- Split adwords campaign
- Field mapping
- Smart field mapping
- CSV file
- JSON file
- Amazon S3
- Redshift
- Elasticsearch
- MySQL table
- Static value
Every part of the ETL is set up via the config file ( default.yml )
Use one config file: default.yml, development.yml and production.yml
app:
name: Inceptum Etl
validEtls:
- ETL_UNIQUE_NAME
- ETL_UNIQUE_NAME_2
generalConfig:
source:
maxRetries: 3
timeoutMillis: 5000
transformer:
minSuccessPercentage: 1
timeoutMillis: 5000
destination:
maxRetries: 3
timeoutMillis: 5000
batchSize: 1
etls:
ETL_UNIQUE_NAME:
source:
type: source_name
source_parameters
transformer:
type: transformer_name
transformer_parameters
destination:
type: destination_name
destination_parameters
savepoint:
type: savepoint_name
savepoint_parameters
ETL_UNIQUE_NAME_2:
source:
type: source_name
source_parameters
transformer:
type: transformer_name
transformer_parameters
destination:
type: destination_name
destination_parameters
savepoint:
type: savepoint_name
savepoint_parameters
# DATABASES
postgres:
DATABASE_CLIENT_NAME:
master:
database_login_parameters
slave:
database_login_parameters
mysql:
DATABASE_CLIENT_NAME:
master:
database_login_parameters
slave:
database_login_parameters
# LOG settings
logging:
streams:
console:
type: console
myredis:
type: redis
mainLogFile:
type: file
path: main.log
loggers:
- name: ROOT
streams:
console: debug
- name: ioc/
streams:
console: debug
- name: mysql/
streams:
console: debug
Use a default.yml config file and a separated config for each etl
The default values are in: default.yml, development.mnt.yml and production.yml
app:
name: Inceptum Etl
validEtls:
- ETL_UNIQUE_NAME
- ETL_UNIQUE_NAME_2
generalConfig:
source:
maxRetries: 3
timeoutMillis: 5000
transformer:
minSuccessPercentage: 1
timeoutMillis: 5000
destination:
maxRetries: 3
timeoutMillis: 5000
batchSize: 1
# General values
sources:
source_name:
source_parameters
source_name_2:
source_parameters
transformers:
transformer_name:
transformer_parameters
transformer_name_2:
transformer_parameters
destinations:
destination_name:
destination_parameters
destination_name_2:
destination_parameters
savepoints:
savepoint_name:
savepoint_parameters
# DATABASES
postgres:
DATABASE_CLIENT_NAME:
master:
database_login_parameters
slave:
database_login_parameters
mysql:
DATABASE_CLIENT_NAME:
master:
database_login_parameters
slave:
database_login_parameters
# LOG settings
logging:
streams:
console:
type: console
myredis:
type: redis
mainLogFile:
type: file
path: main.log
loggers:
- name: ROOT
streams:
console: debug
- name: ioc/
streams:
console: debug
- name: mysql/
streams:
console: debug
Set the variable NODE_APP_INSTANCE with the name of the etl
development-{etl_name}.yml, production-{etl_name}.yml
generalConfig:
source:
type: source_name
transformer:
type: transformer_name_2
destination:
type: destination_name_2
savepoint:
type: savepoint_name
# Overwrite the required source, transformer, destination or savepoint as required
sources:
source_name:
etl_source_parameters
destinations:
destination_name_2:
etl_destination_parameters
Starting a new project from scratch is easy!
$ mkdir project-name
$ cd project-name
$ git init
$ git remote add typescript-base [email protected]:hipages/typescript-base.git
$ git pull typescript-base master
$ vi package.json # Edit the necessary elements of the project definition
$ yarn install # Or npm install... whatever you prefer... I prefer yarn
$ yarn add inceptum-elt # OR npm install
$ vi config/default.yml # set up your etl here
$ vi index.ts # the following code will run any etl
import { LogManager, InceptumApp, Context } from 'inceptum';
import * as program from 'commander';
import { SourcePlugin,
TransformerPlugin,
DestinationPlugin,
ConfigPlugin,
RunnerPlugin,
SavepointPlugin,
} from 'inceptum-etl';
program.version('0.1.0')
.usage('[options] <etlName>')
.option('-v', 'verbose')
.parse(process.argv);
if (program.args.length === 0) {
// tslint:disable-next-line:no-console
console.log('Please specify an etl to execute');
// tslint:disable-next-line:no-console
console.log(program.usage());
process.exit(1);
}
const etlName = program.args[0];
const app = new InceptumApp();
const logger = LogManager.getLogger(__filename);
const validEtls = app.getConfig('app.validEtls', []);
if (validEtls.indexOf(etlName) < 0) {
// tslint:disable-next-line:no-console
console.log(`Unknown etl name: ${etlName}. Valid etls: ${validEtls.join(', ')}`);
// tslint:disable-next-line:no-console
console.log(program.usage());
process.exit(1);
}
logger.info(`Starting execution of ETL: ${etlName}`);
// const etlPlugin = new EtlPlugin(etlName);
// app.use(etlPlugin);
const context = app.getContext();
app.use(new SavepointPlugin(etlName),
new DestinationPlugin(etlName),
new TransformerPlugin(etlName),
new SourcePlugin(etlName),
new ConfigPlugin(etlName),
new RunnerPlugin(etlName),
);
const f = async () => {
await app.start();
// Run the ETL
const etlRunner = await context.getObjectByName('EtlRunner');
try {
await etlRunner.executeEtl()
.then(function() {
// log success
logger.info(`Finished all good`);
});
} catch (err) {
logger.fatal(err, `Finished Error:${err.message}`);
}
// tslint:disable-next-line:no-console
console.log('The runner is', etlRunner);
await app.stop();
};
f().catch( (err) => {
logger.fatal(err, `Etl finished before starting :${err.message}`);
});