This is a very optimized implementation of algorithm described in
Jean Fromentin and Florent Hivert. 2016. Exploring the tree of numerical semi- groups. Math. Comput. 85, 301 (2016), 2553–2568. DOI:https://doi.org/10.1090/mcom/3075
The more up to date code is in directory src/Cilk++/ together with a Sagemath binding.
A numerical semigroup is a subset of the set of natural number which
- contains 0
- is stable under addition
- has a finite complement
The elements of the complement are called gaps. The number of gaps is called the genus.
The goal is to compute the number n(g) of semigroups of a given genus.
A few conjectures:
- Bras-amoros 2008 : n(g) >= n(g-1) + n(g-2). Still widely open.
- Zhai 2013 n(g) >= n(g-1) asymptotically true, but open for small g.
See http://images.math.cnrs.fr/Semigroupes-numeriques-et-nombre-d-or-II.html (in French) for more explanation.
We also validated Wilf conjecture upto n=60 and invalidated some stronger statements (See Near-misses in Wilf's conjecture, Shalom Eliahou, Jean Fromentin https://arxiv.org/abs/1710.03623v1).
Below is the table of the results (A more computer friendly syntax is at the end of https://github.com/hivert/NumericMonoid/raw/master/src/Sizes
g | number of semigroups | g | number of semigroups | g | number of semigroups |
---|---|---|---|---|---|
0 | 1 | 25 | 467224 | 50 | 101090300128 |
1 | 1 | 26 | 770832 | 51 | 164253200784 |
2 | 2 | 27 | 1270267 | 52 | 266815155103 |
3 | 4 | 28 | 2091030 | 53 | 433317458741 |
4 | 7 | 29 | 3437839 | 54 | 703569992121 |
5 | 12 | 30 | 5646773 | 55 | 1142140736859 |
6 | 23 | 31 | 9266788 | 56 | 1853737832107 |
7 | 39 | 32 | 15195070 | 57 | 3008140981820 |
8 | 67 | 33 | 24896206 | 58 | 4880606790010 |
9 | 118 | 34 | 40761087 | 59 | 7917344087695 |
10 | 204 | 35 | 66687201 | 60 | 12841603251351 |
11 | 343 | 36 | 109032500 | 61 | 20825558002053 |
12 | 592 | 37 | 178158289 | 62 | 33768763536686 |
13 | 1001 | 38 | 290939807 | 63 | 54749244915730 |
14 | 1693 | 39 | 474851445 | 64 | 88754191073328 |
15 | 2857 | 40 | 774614284 | 65 | 143863484925550 |
16 | 4806 | 41 | 1262992840 | 66 | 233166577125714 |
17 | 8045 | 42 | 2058356522 | 67 | 377866907506273 |
18 | 13467 | 43 | 3353191846 | 68 | 612309308257800 |
19 | 22464 | 44 | 5460401576 | 69 | 992121118414851 |
20 | 37396 | 45 | 8888486816 | 70 | 1607394814170158 |
21 | 62194 | 46 | 14463633648 | ||
22 | 103246 | 47 | 23527845502 | ||
23 | 170963 | 48 | 38260496374 | ||
24 | 282828 | 49 | 62200036752 |