Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bugfix #6103

Closed
wants to merge 1 commit into from
Closed

bugfix #6103

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions src/llamafactory/data/preprocess.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
from .processors.pairwise import preprocess_pairwise_dataset, print_pairwise_dataset_example
from .processors.pretrain import preprocess_pretrain_dataset
from .processors.supervised import (
preprocess_packed_supervised_dataset,
preprocess_packed_supervised_dataset,preprocess_packed_supervised_dataset_fullDataGroup,
preprocess_supervised_dataset,
print_supervised_dataset_example,
)
Expand Down Expand Up @@ -64,7 +64,8 @@ def __init__(self, data, **kwargs):

OptimizedTypedSequence.__init__ = __init__
preprocess_func = partial(
preprocess_packed_supervised_dataset,
#preprocess_packed_supervised_dataset,
preprocess_packed_supervised_dataset_fullDataGroup,
template=template,
tokenizer=tokenizer,
processor=processor,
Expand Down
137 changes: 136 additions & 1 deletion src/llamafactory/data/processors/supervised.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@ def preprocess_packed_supervised_dataset(
packed_input_ids, packed_attention_masks, packed_labels = [], [], []
packed_images, packed_videos = [], []
for i, length in enumerate(knapsack):
index = length2indexes[length].pop()
index = length2indexes[length].pop() ## this place is losing data samples, very difficult to fix when use length as key ,so introduce preprocess_packed_supervised_dataset_fullDataGroup
packed_input_ids += batch_input_ids[index]
packed_labels += batch_labels[index]
packed_images += batch_images[index]
Expand Down Expand Up @@ -217,3 +217,138 @@ def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
print("label_ids:\n{}".format(example["labels"]))
print(f"labels:\n{tokenizer.decode(valid_labels, skip_special_tokens=False)}")




def pack_data_points_by_length(
lengths: List[int], max_length: int, max_size: int = -1
) -> List[List[int]]:
"""given lengths of data points, we merge consecutive data points into a new data point, as long as the concatenated length is less than max_length
Args:
lengths (List[int]): List of lengths of data points
max_length (int): the concatenated length must be less than or equal max_length
max_size: if != -1; the maximum number of consecutive items being merged; max_size: -1 --> no limit for number of items being merged

max_size: the maximum number of data points being merged
For example, lengths=[1, 3, 2, 2, 6, 4, 2, 6, 5]; max_length=10
if max_size=-1 --> [[0,1,2,3], [4, 5], [6,7], [8]]
if max_size=3 --> [[0,1,2], [3,4], [5, 6], [7], [8]]

Returns:
_type_: groups of indices: [[index1, index2, ...], [], ...]
"""
result = []
current_concatenated_length = 0
current_list = []
for i in range(len(lengths)):
cur_length = lengths[i]
if cur_length + current_concatenated_length <= max_length and (
max_size == -1 or len(current_list) < max_size
):
current_concatenated_length += cur_length
current_list.append(i)
else: # current_list is done, create a new one
if len(current_list) > 0:
result.append(current_list)
current_list = [i]
current_concatenated_length = cur_length

if len(current_list) > 0:
result.append(current_list)

# assert to make sure no indices were missing
assert sum([len(indices) for indices in result]) == len(lengths)
return result #
def preprocess_packed_supervised_dataset_fullDataGroup(
examples: Dict[str, List[Any]],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
) -> Dict[str, List[Any]]:
# TODO: use `position_ids` to achieve packing
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
valid_num = 0
batch_input_ids, batch_labels, batch_images, batch_videos = [], [], [], []
lengths = []
length2indexes = defaultdict(list)
for i in range(len(examples["_prompt"])):
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1:
logger.warning_rank0(
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
)
continue

input_ids, labels = _encode_supervised_example(
prompt=examples["_prompt"][i],
response=examples["_response"][i],
system=examples["_system"][i],
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
cutoff_len=data_args.cutoff_len - 1, # reserved for the padding token
train_on_prompt=data_args.train_on_prompt,
mask_history=data_args.mask_history,
)
length = len(input_ids)
if length > data_args.cutoff_len:
logger.warning_rank0(f"Dropped lengthy example with length {length} > {data_args.cutoff_len}.")
else:
lengths.append(length)
length2indexes[length].append(valid_num)
batch_input_ids.append(input_ids)
batch_labels.append(labels)
batch_images.append(examples["_images"][i] or [])
batch_videos.append(examples["_videos"][i] or [])
valid_num += 1

model_inputs = defaultdict(list);

lengthll=lengths;
noDegenerateGroups=pack_data_points_by_length(lengthll,data_args.cutoff_len - 1,-1)
for group in noDegenerateGroups:### each group
packed_input_ids, packed_attention_masks, packed_labels = [], [], []
packed_images, packed_videos = [], []
packed_posid = [] ### 1group
for i,index in enumerate(group):## each sample

packed_input_ids += batch_input_ids[index];
if data_args.neat_packing:
batch_labels[index][0]=IGNORE_INDEX
packed_labels += batch_labels[index]
packed_images += batch_images[index]
packed_videos += batch_videos[index]
packed_posid += list(range(len(batch_input_ids[index])))
if data_args.neat_packing:
packed_attention_masks += [i + 1] * len(batch_input_ids[index]) # start from 1
else:
packed_attention_masks += [1] * len(batch_input_ids[index])

### pad
if len(packed_input_ids) < data_args.cutoff_len: ### pad
pad_length = data_args.cutoff_len - len(packed_input_ids)
packed_input_ids += [tokenizer.pad_token_id] * pad_length
packed_labels += [IGNORE_INDEX] * pad_length
packed_posid += [0] * pad_length
if data_args.neat_packing:
packed_attention_masks += [0] * pad_length
else:
packed_attention_masks += [1] * pad_length # more efficient flash_attn

if len(packed_input_ids) != data_args.cutoff_len:
raise ValueError("The length of packed example should be identical to the cutoff length.")

model_inputs["input_ids"].append(packed_input_ids)
model_inputs["attention_mask"].append(packed_attention_masks)
model_inputs["labels"].append(packed_labels)
model_inputs["images"].append(packed_images or None)
model_inputs["videos"].append(packed_videos or None)
if posidflag:
model_inputs['position_ids'].append(packed_posid)

return model_inputs