Skip to content

Commit

Permalink
initial
Browse files Browse the repository at this point in the history
  • Loading branch information
Moon Kwon Kim authored and Moon Kwon Kim committed May 1, 2018
0 parents commit e4f8711
Show file tree
Hide file tree
Showing 36 changed files with 96,462 additions and 0 deletions.
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2018 Moon Kwon Kim

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# RLTrader: 딥러닝으로 하는 주식 투자

이 프로젝트는 출판 예정이고 아래 라이센스를 따릅니다.

<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
139 changes: 139 additions & 0 deletions _main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
import logging
import os
import settings
import data_manager
from policy_learner import PolicyLearner


def train(stock_code, data):
# 기간 필터링
training_data = data[(data['date'] >= '2016-01-01') &
(data['date'] <= '2016-12-31')]
training_data = training_data.dropna()
# testing_data = data[(data['date'] >= '2016-01-01') &
# (data['date'] <= '2016-12-31')]
testing_data = data[(data['date'] >= '2017-01-01') &
(data['date'] <= '2017-12-31')]
testing_data = testing_data.dropna()

# 차트 데이터 분리
features = ['date', 'open', 'high', 'low', 'close', 'volume']
training_chart_data = training_data[features]
testing_chart_data = testing_data[features]

# 학습 데이터 분리
features_training_data = [
'open_lastclose_ratio', 'high_close_ratio', 'low_close_ratio',
'close_lastclose_ratio', 'volume_lastvolume_ratio',
'close_ma5_ratio', 'volume_ma5_ratio',
'close_ma10_ratio', 'volume_ma10_ratio',
'close_ma20_ratio', 'volume_ma20_ratio',
'close_ma60_ratio', 'volume_ma60_ratio',
'close_ma120_ratio', 'volume_ma120_ratio'
]
training_data = training_data[features_training_data]
testing_data = testing_data[features_training_data]

# 강화학습 시작
min_trading_unit = 1
max_trading_unit = 1
delayed_reward_threshold = .05
start_epsilon = .5
model_path = ''
if stock_code == '005930': # 삼성전자
min_trading_unit = 1
max_trading_unit = 1
delayed_reward_threshold = .05
model_path = os.path.join(settings.BASE_DIR, 'models/005930/model_20180318093401.h5')
if stock_code == '000660': # SK하이닉스
min_trading_unit = 10
max_trading_unit = 10
delayed_reward_threshold = .05
model_path = os.path.join(settings.BASE_DIR, 'models/000660/model_20180318105259.h5')
if stock_code == '005380': # 현대차
min_trading_unit = 5
max_trading_unit = 5
delayed_reward_threshold = .02
model_path = os.path.join(settings.BASE_DIR, 'models/005380/model_20180328005205.h5')
if stock_code == '051910': # LG화학
min_trading_unit = 1
max_trading_unit = 1
delayed_reward_threshold = .05
model_path = os.path.join(settings.BASE_DIR, 'models/051910/model_20180318020318.h5')
if stock_code == '035420': # NAVER
min_trading_unit = 1
max_trading_unit = 1
delayed_reward_threshold = .05
model_path = os.path.join(settings.BASE_DIR, 'models/035420/model_20180318143434.h5')
if stock_code == '015760': # 한국전력
min_trading_unit = 10
max_trading_unit = 10
model_path = os.path.join(settings.BASE_DIR, 'models/015760/model_20180318032850.h5')
if stock_code == '030200': # KT
min_trading_unit = 20
max_trading_unit = 20
model_path = os.path.join(settings.BASE_DIR, 'models/030200/model_20180318001555.h5')
if stock_code == '035250': # 강원랜드
min_trading_unit = 30
max_trading_unit = 30
model_path = os.path.join(settings.BASE_DIR, 'models/035250/model_20180318043300.h5')
if stock_code == '009240': # 한샘 x
min_trading_unit = 5
max_trading_unit = 5
model_path = os.path.join(settings.BASE_DIR, 'models/009240/model_20180318035122.h5')

# 학습
# policy_learner = PolicyLearner(
# stock_code=stock_code, chart_data=training_chart_data, training_data=training_data,
# min_trading_unit=min_trading_unit, max_trading_unit=max_trading_unit,
# delayed_reward_threshold=delayed_reward_threshold, lr=.0001)
# policy_learner.fit(balance=10000000, num_epoches=1000,
# discount_factor=0, start_epsilon=start_epsilon)
#
# # 정책 신경망을 파일로 저장
# model_dir = os.path.join(settings.BASE_DIR, 'models/%s' % stock_code)
# if not os.path.isdir(model_dir):
# os.makedirs(model_dir)
# model_path = os.path.join(model_dir, 'model_%s.h5' % timestr)
# policy_learner.policy_network.save_model(model_path)

# 테스팅
policy_learner = PolicyLearner(
stock_code=stock_code, chart_data=testing_chart_data, training_data=testing_data,
min_trading_unit=min_trading_unit, max_trading_unit=max_trading_unit)
policy_learner.trade(model_path, balance=10000000)


if __name__ == '__main__':
list_stock_code = [
'005930', # 삼성전자 ok
'000660', # SK하이닉스 ok
'005380', # 현대차 ok
'051910', # LG화학 ok
'035420', # NAVER ok
# '015760', # 한국전력
'030200', # KT ok
# '035250', # 강원랜드
# '009240', # 한샘
]

for stock_code in list_stock_code:
# 로그 기록
log_dir = os.path.join(settings.BASE_DIR, 'logs/%s' % stock_code)
timestr = settings.get_time_str()
file_handler = logging.FileHandler(filename=os.path.join(
log_dir, "%s_%s.log" % (stock_code, timestr)), encoding='utf-8')
stream_handler = logging.StreamHandler()
file_handler.setLevel(logging.DEBUG)
stream_handler.setLevel(logging.INFO)
logging.basicConfig(format="%(message)s",
handlers=[file_handler, stream_handler], level=logging.DEBUG)

# 주식 데이터 준비
chart_data = data_manager.load_chart_data(
os.path.join(settings.BASE_DIR,
'chart_data/{}.csv'.format(stock_code)))
prep_data = data_manager.preprocess(chart_data)
training_data = data_manager.build_training_data(prep_data)

train(stock_code, training_data)
58 changes: 58 additions & 0 deletions _main_notraining.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
import logging
import os
import settings
import data_manager
from policy_learner import PolicyLearner


if __name__ == '__main__':
stock_code = '005930' # 삼성전자
model_ver = '20180202000545'

# 로그 기록
log_dir = os.path.join(settings.BASE_DIR, 'logs/%s' % stock_code)
timestr = settings.get_time_str()
file_handler = logging.FileHandler(filename=os.path.join(
log_dir, "%s_%s.log" % (stock_code, timestr)), encoding='utf-8')
stream_handler = logging.StreamHandler()
file_handler.setLevel(logging.DEBUG)
stream_handler.setLevel(logging.INFO)
logging.basicConfig(format="%(message)s",
handlers=[file_handler, stream_handler], level=logging.DEBUG)

# 주식 데이터 준비
chart_data = data_manager.load_chart_data(
os.path.join(settings.BASE_DIR,
'data/chart_data/{}.csv'.format(stock_code)))
prep_data = data_manager.preprocess(chart_data)
training_data = data_manager.build_training_data(prep_data)

# 기간 필터링
training_data = training_data[(training_data['date'] >= '2018-01-01') &
(training_data['date'] <= '2018-01-31')]
training_data = training_data.dropna()

# 차트 데이터 분리
features_chart_data = ['date', 'open', 'high', 'low', 'close', 'volume']
chart_data = training_data[features_chart_data]

# 학습 데이터 분리
features_training_data = [
'open_lastclose_ratio', 'high_close_ratio', 'low_close_ratio',
'close_lastclose_ratio', 'volume_lastvolume_ratio',
'close_ma5_ratio', 'volume_ma5_ratio',
'close_ma10_ratio', 'volume_ma10_ratio',
'close_ma20_ratio', 'volume_ma20_ratio',
'close_ma60_ratio', 'volume_ma60_ratio',
'close_ma120_ratio', 'volume_ma120_ratio'
]
training_data = training_data[features_training_data]

# 비 학습 투자 시뮬레이션 시작
policy_learner = PolicyLearner(
stock_code=stock_code, chart_data=chart_data, training_data=training_data,
min_trading_unit=1, max_trading_unit=3)
policy_learner.trade(balance=10000000,
model_path=os.path.join(
settings.BASE_DIR,
'models/{}/model_{}.h5'.format(stock_code, model_ver)))
168 changes: 168 additions & 0 deletions agent.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
import numpy as np


class Agent:
# 에이전트 상태가 구성하는 값 개수
STATE_DIM = 2 # 주식 보유 비율, 포트폴리오 가치 비율

# 매매 수수료 및 세금
TRADING_CHARGE = 0 # 거래 수수료 미고려 (일반적으로 0.015%)
TRADING_TAX = 0 # 거래세 미고려 (실제0.3%)

# 행동
ACTION_BUY = 0 # 매수
ACTION_SELL = 1 # 매도
ACTION_HOLD = 2 # 홀딩
ACTIONS = [ACTION_BUY, ACTION_SELL] # 인공 신경망에서 확률을 구할 행동들
NUM_ACTIONS = len(ACTIONS) # 인공 신경망에서 고려할 출력값의 개수

def __init__(
self, environment, min_trading_unit=1, max_trading_unit=2,
delayed_reward_threshold=.05):
# Environment 객체
self.environment = environment # 현재 주식 가격을 가져오기 위해 환경 참조

# 최소 매매 단위, 최대 매매 단위, 지연보상 임계치
self.min_trading_unit = min_trading_unit # 최소 단일 거래 단위
self.max_trading_unit = max_trading_unit # 최대 단일 거래 단위
self.delayed_reward_threshold = delayed_reward_threshold # 지연보상 임계치

# Agent 클래스의 속성
self.initial_balance = 0 # 초기 자본금
self.balance = 0 # 현재 현금 잔고
self.num_stocks = 0 # 보유 주식 수
self.portfolio_value = 0 # balance + num_stocks * {현재 주식 가격}
self.base_portfolio_value = 0 # 직전 학습 시점의 PV
self.num_buy = 0 # 매수 횟수
self.num_sell = 0 # 매도 횟수
self.num_hold = 0 # 홀딩 횟수
self.immediate_reward = 0 # 즉시 보상

# Agent 클래스의 상태
self.ratio_hold = 0 # 주식 보유 비율
self.ratio_portfolio_value = 0 # 포트폴리오 가치 비율

def reset(self):
self.balance = self.initial_balance
self.num_stocks = 0
self.portfolio_value = self.initial_balance
self.base_portfolio_value = self.initial_balance
self.num_buy = 0
self.num_sell = 0
self.num_hold = 0
self.immediate_reward = 0
self.ratio_hold = 0
self.ratio_portfolio_value = 0

def set_balance(self, balance):
self.initial_balance = balance

def get_states(self):
self.ratio_hold = self.num_hold / int(
self.portfolio_value / self.environment.get_price())
self.ratio_portfolio_value = self.portfolio_value / self.base_portfolio_value
return (
self.ratio_hold,
self.ratio_portfolio_value
)

def decide_action(self, policy_network, sample, epsilon):
confidence = 0.
# 탐험 결정
if np.random.rand() < epsilon:
exploration = True
action = np.random.randint(self.NUM_ACTIONS) # 무작위로 행동 결정
else:
exploration = False
probs = policy_network.predict(sample) # 각 행동에 대한 확률
action = np.argmax(probs)
confidence = 1 + probs[action]
return action, confidence, exploration

def validate_action(self, action):
validity = True
if action == Agent.ACTION_BUY:
# 적어도 1주를 살 수 있는지 확인
if self.balance < self.environment.get_price() * (
1 + self.TRADING_CHARGE) * self.min_trading_unit:
validity = False
elif action == Agent.ACTION_SELL:
# 주식 잔고가 있는지 확인
if self.num_stocks <= 0:
validity = False
return validity

def decide_trading_unit(self, confidence):
if np.isnan(confidence):
return self.min_trading_unit
added_traiding = max(min(
int(confidence * (self.max_trading_unit - self.min_trading_unit)),
self.max_trading_unit-self.min_trading_unit
), 0)
return self.min_trading_unit + added_traiding

def act(self, action, confidence):
if not self.validate_action(action):
action = Agent.ACTION_HOLD

# 환경에서 현재 가격 얻기
curr_price = self.environment.get_price()

# 즉시 보상 초기화
self.immediate_reward = 0

# 매수
if action == Agent.ACTION_BUY:
# 매수할 단위를 판단
trading_unit = self.decide_trading_unit(confidence)
balance = self.balance - curr_price * (1 + self.TRADING_CHARGE) * trading_unit
# 보유 현금이 모자랄 경우 보유 현금으로 가능한 만큼 최대한 매수
if balance < 0:
trading_unit = max(min(
int(self.balance / (
curr_price * (1 + self.TRADING_CHARGE))), self.max_trading_unit),
self.min_trading_unit
)
# 수수료를 적용하여 총 매수 금액 산정
invest_amount = curr_price * (1 + self.TRADING_CHARGE) * trading_unit
self.balance -= invest_amount # 보유 현금을 갱신
self.num_stocks += trading_unit # 보유 주식 수를 갱신
self.num_buy += 1 # 매수 횟수 증가

# 매도
elif action == Agent.ACTION_SELL:
# 매도할 단위를 판단
trading_unit = self.decide_trading_unit(confidence)
# 보유 주식이 모자랄 경우 가능한 만큼 최대한 매도
trading_unit = min(trading_unit, self.num_stocks)
# 매도
invest_amount = curr_price * (
1 - (self.TRADING_TAX + self.TRADING_CHARGE)) * trading_unit
self.num_stocks -= trading_unit # 보유 주식 수를 갱신
self.balance += invest_amount # 보유 현금을 갱신
self.num_sell += 1 # 매도 횟수 증가

# 홀딩
elif action == Agent.ACTION_HOLD:
self.num_hold += 1 # 홀딩 횟수 증가

# 포트폴리오 가치 갱신
self.portfolio_value = self.balance + curr_price * self.num_stocks
profitloss = (
(self.portfolio_value - self.base_portfolio_value) / self.base_portfolio_value)

# 즉시 보상 판단
self.immediate_reward = 1 if profitloss >= 0 else -1

# 지연 보상 판단
if profitloss > self.delayed_reward_threshold:
delayed_reward = 1
# 목표 수익률 달성하여 기준 포트폴리오 가치 갱신
self.base_portfolio_value = self.portfolio_value
elif profitloss < -self.delayed_reward_threshold:
delayed_reward = -1
# 손실 기준치를 초과하여 기준 포트폴리오 가치 갱신
self.base_portfolio_value = self.portfolio_value
else:
delayed_reward = 0
return self.immediate_reward, delayed_reward
Loading

0 comments on commit e4f8711

Please sign in to comment.