Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix parallelization problems in noise estimation #728

Merged
merged 4 commits into from
Jan 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions src/libtoast/include/toast/fod_psd.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

// Copyright (c) 2015-2020 by the parties listed in the AUTHORS file.
// Copyright (c) 2015-2024 by the parties listed in the AUTHORS file.
// All rights reserved. Use of this source code is governed by
// a BSD-style license that can be found in the LICENSE file.

Expand All @@ -11,11 +11,12 @@

namespace toast {
void fod_autosums(int64_t n, const double * x, const uint8_t * good,
int64_t lagmax, double * sums, int64_t * hits);
int64_t lagmax, double * sums, int64_t * hits,
int64_t all_sums);

void fod_crosssums(int64_t n, const double * x, const double * y,
const uint8_t * good, int64_t lagmax, double * sums,
int64_t * hits);
int64_t * hits, int64_t all_sums, int64_t symmetric);
}

#endif // ifndef TOAST_FOD_PSD_HPP
45 changes: 27 additions & 18 deletions src/libtoast/src/toast_fod_psd.cpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

// Copyright (c) 2015-2020 by the parties listed in the AUTHORS file.
// Copyright (c) 2015-2024 by the parties listed in the AUTHORS file.
// All rights reserved. Use of this source code is governed by
// a BSD-style license that can be found in the LICENSE file.

Expand All @@ -10,7 +10,8 @@


void toast::fod_autosums(int64_t n, double const * x, uint8_t const * good,
int64_t lagmax, double * sums, int64_t * hits) {
int64_t lagmax, double * sums, int64_t * hits,
int64_t all_sums) {
toast::AlignedVector <double> xgood(n);
toast::AlignedVector <uint8_t> gd(n);

Expand All @@ -24,27 +25,30 @@ void toast::fod_autosums(int64_t n, double const * x, uint8_t const * good,
}
}

#pragma \
omp parallel for default(none) shared(n, gd, lagmax, xgood, sums, hits) schedule(static, 100)
#pragma \
omp parallel for default(none) \
shared(n, gd, lagmax, xgood, sums, hits, all_sums) \
schedule(static, 100)
for (int64_t lag = 0; lag < lagmax; ++lag) {
int64_t j = lag;
double lagsum = 0.0;
int64_t hitsum = 0;
for (int64_t i = 0; i < (n - lag); ++i) {
int64_t imax = all_sums ? n - lag : n - lagmax;
for (int64_t i = 0; i < imax; ++i) {
lagsum += xgood[i] * xgood[j];
hitsum += gd[i] * gd[j];
j++;
}
sums[lag] = lagsum;
hits[lag] = hitsum;
sums[lag] += lagsum;
hits[lag] += hitsum;
}

return;
}

void toast::fod_crosssums(int64_t n, double const * x, double const * y,
uint8_t const * good, int64_t lagmax, double * sums,
int64_t * hits) {
int64_t * hits, int64_t all_sums, int64_t symmetric) {
toast::AlignedVector <double> xgood(n);
toast::AlignedVector <double> ygood(n);
toast::AlignedVector <uint8_t> gd(n);
Expand All @@ -61,23 +65,28 @@ void toast::fod_crosssums(int64_t n, double const * x, double const * y,
}
}

#pragma \
omp parallel for default(none) shared(n, gd, lagmax, xgood, ygood, sums, hits) schedule(static, 100)
#pragma \
omp parallel for default(none) \
shared(n, gd, lagmax, xgood, ygood, sums, hits, all_sums, symmetric) \
schedule(static, 100)
for (int64_t lag = 0; lag < lagmax; ++lag) {
int64_t i, j;
double lagsum = 0.0;
int64_t hitsum = 0;
for (i = 0, j = lag; i < (n - lag); ++i, ++j) {
int64_t imax = all_sums ? n - lag : n - lagmax;
for (i = 0, j = lag; i < imax; ++i, ++j) {
lagsum += xgood[i] * ygood[j];
hitsum += gd[i] * gd[j];
}

// Use symmetry to double the statistics
for (i = 0, j = lag; i < (n - lag); ++i, ++j) {
lagsum += xgood[j] * ygood[i];
}
sums[lag] = lagsum;
hits[lag] = 2 * hitsum;
if (symmetric && lag != 0) {
// Use symmetry to double the statistics
for (i = 0, j = lag; i < imax; ++i, ++j) {
lagsum += xgood[j] * ygood[i];
}
hitsum *= 2;
}
sums[lag] += lagsum;
hits[lag] += hitsum;
}

return;
Expand Down
25 changes: 16 additions & 9 deletions src/toast/_libtoast/fod_psd.cpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

// Copyright (c) 2015-2020 by the parties listed in the AUTHORS file.
// Copyright (c) 2015-2024 by the parties listed in the AUTHORS file.
// All rights reserved. Use of this source code is governed by
// a BSD-style license that can be found in the LICENSE file.

Expand All @@ -8,7 +8,8 @@

void init_fod_psd(py::module & m) {
m.def("fod_crosssums", [](py::buffer x, py::buffer y, py::buffer good,
int64_t lagmax, py::buffer sums, py::buffer hits) {
int64_t lagmax, py::buffer sums, py::buffer hits,
int64_t all_sums, int64_t symmetric) {
pybuffer_check_1D <double> (x);
pybuffer_check_1D <double> (y);
pybuffer_check_1D <uint8_t> (good);
Expand Down Expand Up @@ -42,11 +43,12 @@ void init_fod_psd(py::module & m) {
uint8_t * rawgood = reinterpret_cast <uint8_t *> (info_good.ptr);
double * rawsums = reinterpret_cast <double *> (info_sums.ptr);
int64_t * rawhits = reinterpret_cast <int64_t *> (info_hits.ptr);
toast::fod_crosssums(n, rawx, rawy, rawgood, lagmax, rawsums, rawhits);
toast::fod_crosssums(n, rawx, rawy, rawgood, lagmax,
rawsums, rawhits, all_sums, symmetric);
return;
}, py::arg("x"), py::arg("y"), py::arg("good"), py::arg("lagmax"),
py::arg("sums"), py::arg(
"hits"), R"(
py::arg("sums"), py::arg("hits"), py::arg("all_sums"),
py::arg("symmetric"), R"(
Accumulate the time domain covariance between two vectors.

Args:
Expand All @@ -56,14 +58,17 @@ void init_fod_psd(py::module & m) {
lagmax (int): The maximum sample distance to consider.
sums (array like, float64): The vector of sums^2 to accumulate for each lag.
hits (array_like, int64): The vector of hits to accumulate for each lag.
all_sums (int): If non-zero, evaluate lags < `lagmax` even in the last
`lagmax` samples of `x` and `y`.

Returns:
None.

)");

m.def("fod_autosums", [](py::buffer x, py::buffer good, int64_t lagmax,
py::buffer sums, py::buffer hits) {
py::buffer sums, py::buffer hits,
int64_t all_sums) {
pybuffer_check_1D <double> (x);
pybuffer_check_1D <uint8_t> (good);
pybuffer_check_1D <double> (sums);
Expand Down Expand Up @@ -93,11 +98,11 @@ void init_fod_psd(py::module & m) {
uint8_t * rawgood = reinterpret_cast <uint8_t *> (info_good.ptr);
double * rawsums = reinterpret_cast <double *> (info_sums.ptr);
int64_t * rawhits = reinterpret_cast <int64_t *> (info_hits.ptr);
toast::fod_autosums(n, rawx, rawgood, lagmax, rawsums, rawhits);
toast::fod_autosums(n, rawx, rawgood, lagmax,
rawsums, rawhits, all_sums);
return;
}, py::arg("x"), py::arg("good"), py::arg("lagmax"),
py::arg("sums"), py::arg(
"hits"), R"(
py::arg("sums"), py::arg("hits"), py::arg("all_sums"), R"(
Accumulate the time domain covariance.

Args:
Expand All @@ -106,6 +111,8 @@ void init_fod_psd(py::module & m) {
lagmax (int): The maximum sample distance to consider.
sums (array like, float64): The vector of sums^2 to accumulate for each lag.
hits (array_like, int64): The vector of hits to accumulate for each lag.
all_sums (int): If non-zero, evaluate lags < `lagmax` even in the last
`lagmax` samples of `x`.

Returns:
None.
Expand Down
32 changes: 22 additions & 10 deletions src/toast/observation.py
Original file line number Diff line number Diff line change
Expand Up @@ -656,6 +656,7 @@ def duplicate(
sample_sets=self.all_sample_sets,
process_rows=self.dist.process_rows,
)
new_obs.set_local_detector_flags(self.local_detector_flags)
for k, v in self._internal.items():
if meta is None or k in meta:
new_obs[k] = copy.deepcopy(v)
Expand Down Expand Up @@ -720,6 +721,7 @@ def redistribute(
times=None,
override_sample_sets=False,
override_detector_sets=False,
return_global_intervals=False,
):
"""Take the currently allocated observation and redistribute in place.

Expand All @@ -738,9 +740,11 @@ def redistribute(
existing sample set boundaries in the redistributed data.
override_detector_sets (False, None or list): If not False, override
existing detector set boundaries in the redistributed data.
return_global_intervals (bool): Return a list of global intervals for
reference

Returns:
None
None or global_intervals

"""
log = Logger.get()
Expand Down Expand Up @@ -781,15 +785,16 @@ def redistribute(
)

# Do the actual redistribution
new_shr_manager, new_det_manager, new_intervals_manager = redistribute_data(
self.dist,
new_dist,
self.shared,
self.detdata,
self.intervals,
times=times,
dbg=self.name,
)
new_shr_manager, new_det_manager, new_intervals_manager, global_intervals = \
redistribute_data(
self.dist,
new_dist,
self.shared,
self.detdata,
self.intervals,
times=times,
dbg=self.name,
)

# Redistribute any metadata objects that support it.
for k, v in self._internal.items():
Expand All @@ -813,10 +818,17 @@ def redistribute(
self.intervals = new_intervals_manager

# Restore detector flags for our new local detectors
self._detflags = {x: int(0) for x in self.dist.dets[self.dist.comm.group_rank]}
self.set_local_detector_flags(
{x: all_det_flags[x] for x in self.local_detectors}
)

if return_global_intervals:
global_intervals = self.dist.comm.comm_group.bcast(global_intervals)
return global_intervals
else:
return

# Accelerator use

def accel_create(self, names):
Expand Down
7 changes: 6 additions & 1 deletion src/toast/observation_dist.py
Original file line number Diff line number Diff line change
Expand Up @@ -917,4 +917,9 @@ def redistribute_data(
glb = global_intervals[field]
new_intervals_manager.create(field, glb, new_shared_manager[times], fromrank=0)

return new_shared_manager, new_detdata_manager, new_intervals_manager
return (
new_shared_manager,
new_detdata_manager,
new_intervals_manager,
global_intervals,
)
Loading
Loading