-
Notifications
You must be signed in to change notification settings - Fork 4.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[feature] support Gemma2Model for tensor parallem training #6122
Open
jing-4369
wants to merge
2
commits into
hpcaitech:main
Choose a base branch
from
jing-4369:gemma_dev
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,302 @@ | ||
from typing import List, Optional | ||
|
||
import torch | ||
import torch.distributed | ||
import torch.utils.checkpoint | ||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast | ||
from transformers.models.gemma2.modeling_gemma2 import Gemma2ForCausalLM, Gemma2Model | ||
from transformers.utils import logging | ||
|
||
from colossalai.pipeline.stage_manager import PipelineStageManager | ||
from colossalai.shardformer.layer._operation import gather_sp_output | ||
from colossalai.shardformer.layer.utils import is_share_sp_tp, split_batch_zigzag | ||
from colossalai.shardformer.shard import ShardConfig | ||
|
||
from ..layer import RingAttention, dist_cross_entropy | ||
|
||
_SUPPORTED_SP_MODE = ["all_to_all", "split_gather", "ring", "ring_attn"] | ||
|
||
|
||
class Gemma2PipelineForwards: | ||
""" | ||
This class serves as a micro library for forward function substitution of Llama models | ||
under pipeline setting. | ||
""" | ||
|
||
@staticmethod | ||
def gemma2_model_forward( | ||
self: Gemma2Model, | ||
input_ids: torch.LongTensor = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_values: Optional[List[torch.FloatTensor]] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
cache_position: Optional[torch.LongTensor] = None, | ||
stage_manager: Optional[PipelineStageManager] = None, | ||
hidden_states: Optional[torch.FloatTensor] = None, | ||
stage_index: Optional[List[int]] = None, | ||
shard_config: ShardConfig = None, | ||
force_sp_gather: bool = True, # Set to false only when computing cross entropy | ||
): | ||
logger = logging.get_logger(__name__) | ||
|
||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | ||
output_hidden_states = ( | ||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | ||
) | ||
use_cache = use_cache if use_cache is not None else self.config.use_cache | ||
if use_cache: | ||
logger.warning_once( | ||
"`use_cache=True` is incompatible with pipeline parallelism. Setting `use_cache=False`..." | ||
) | ||
use_cache = False | ||
|
||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
|
||
disable_pp = stage_manager is None | ||
# retrieve input_ids and inputs_embeds | ||
if disable_pp or stage_manager.is_first_stage(): | ||
if input_ids is not None and inputs_embeds is not None: | ||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | ||
elif input_ids is not None: | ||
batch_size, seq_length = input_ids.shape[:2] | ||
elif inputs_embeds is not None: | ||
batch_size, seq_length, _ = inputs_embeds.shape[:2] | ||
else: | ||
raise ValueError("You have to specify either input_ids or inputs_embeds") | ||
if inputs_embeds is None: | ||
inputs_embeds = self.embed_tokens(input_ids) | ||
hidden_states = inputs_embeds | ||
device = hidden_states.device | ||
else: | ||
input_shape = hidden_states.shape[:-1] | ||
batch_size, seq_length = input_shape | ||
device = hidden_states.device | ||
|
||
# Support SP + PP | ||
sp_mode = shard_config.sequence_parallelism_mode | ||
shard_config.sequence_parallel_process_group | ||
sp_size = shard_config.sequence_parallel_size | ||
# Generating full positions ids for modes that gather sequence before attn | ||
if stage_manager and (sp_mode != "ring_attn" and not stage_manager.is_first_stage()): | ||
seq_length *= sp_size | ||
|
||
past_seen_tokens = 0 | ||
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=device) | ||
|
||
seq_length + past_seen_tokens | ||
|
||
if output_attentions: | ||
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") | ||
output_attentions = False | ||
if output_hidden_states: | ||
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") | ||
output_hidden_states = False | ||
if use_cache: | ||
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") | ||
use_cache = False | ||
|
||
if position_ids is None: | ||
position_ids = cache_position.unsqueeze(0) | ||
|
||
attn_kwargs: torch.Tensor = self._update_causal_mask( | ||
attention_mask, hidden_states, cache_position, past_key_values, output_attentions | ||
) | ||
|
||
# decoder layers | ||
all_hidden_states = () if output_hidden_states else None | ||
all_self_attns = () if output_attentions else None | ||
next_decoder_cache = None | ||
start_idx, end_idx = (0, len(self.layers)) if disable_pp else (stage_index[0], stage_index[1]) | ||
|
||
num_ckpt_layers = 0 | ||
if self.gradient_checkpointing and self.training: | ||
num_ckpt_layers = end_idx - start_idx | ||
# TODO: We can replace `gradient_checkpointing_enable` fn and initialize a gradient_checkpointing (List[bool]) for each layer | ||
if shard_config.gradient_checkpoint_config is not None: | ||
num_ckpt_layers = shard_config.gradient_checkpoint_config.get_num_ckpt_layers( | ||
stage=stage_manager.stage, | ||
num_stages=stage_manager.num_stages, | ||
num_layers=end_idx - start_idx, | ||
model_chunk_id=(stage_manager.model_chunk_id if stage_manager.is_interleave else 0), | ||
num_model_chunks=stage_manager.num_model_chunks, | ||
) | ||
assert num_ckpt_layers <= end_idx - start_idx | ||
|
||
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx): | ||
if output_hidden_states: | ||
all_hidden_states += (hidden_states,) | ||
if idx - start_idx < num_ckpt_layers: | ||
layer_outputs = self._gradient_checkpointing_func( | ||
decoder_layer.__call__, | ||
hidden_states, | ||
attn_kwargs, | ||
position_ids, | ||
past_key_values, | ||
output_attentions, | ||
use_cache, | ||
cache_position, | ||
) | ||
else: | ||
layer_outputs = decoder_layer( | ||
hidden_states, | ||
attention_mask=attn_kwargs, | ||
position_ids=position_ids, | ||
past_key_value=past_key_values, | ||
output_attentions=output_attentions, | ||
use_cache=use_cache, | ||
cache_position=cache_position, | ||
) | ||
hidden_states = layer_outputs[0] | ||
|
||
if use_cache: | ||
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | ||
if output_attentions: | ||
all_self_attns += (layer_outputs[1],) | ||
|
||
if disable_pp or stage_manager.is_last_stage(): | ||
hidden_states = self.norm(hidden_states) | ||
if (not shard_config.parallel_output) or force_sp_gather or is_share_sp_tp(sp_mode): # noqa | ||
hidden_states = gather_sp_output(hidden_states, shard_config) | ||
|
||
# add hidden states from the last decoder layer | ||
if output_hidden_states: | ||
all_hidden_states += (hidden_states,) | ||
next_cache = next_decoder_cache if use_cache else None | ||
if disable_pp or stage_manager.is_last_stage(): | ||
if not return_dict: | ||
return tuple( | ||
v | ||
for v in [ | ||
hidden_states, | ||
next_cache, | ||
all_hidden_states, | ||
all_self_attns, | ||
] | ||
if v is not None | ||
) | ||
return BaseModelOutputWithPast( | ||
last_hidden_state=hidden_states, | ||
past_key_values=next_cache, | ||
hidden_states=all_hidden_states, | ||
attentions=all_self_attns, | ||
) | ||
# always return dict for intermediate stage | ||
return {"hidden_states": hidden_states} | ||
|
||
@staticmethod | ||
def gemma2_for_causal_lm_forward( | ||
self: Gemma2ForCausalLM, | ||
input_ids: torch.LongTensor = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_values: Optional[List[torch.FloatTensor]] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
labels: Optional[torch.LongTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
cache_position: Optional[torch.LongTensor] = None, | ||
stage_manager: Optional[PipelineStageManager] = None, | ||
hidden_states: Optional[torch.FloatTensor] = None, | ||
stage_index: Optional[List[int]] = None, | ||
shard_config: ShardConfig = None, | ||
**kwargs, | ||
): | ||
r""" | ||
Args: | ||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | ||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | ||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | ||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | ||
|
||
Returns: | ||
|
||
Example: | ||
|
||
```python | ||
>>> from transformers import AutoTokenizer, LlamaForCausalLM | ||
|
||
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | ||
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | ||
|
||
>>> prompt = "Hey, are you conscious? Can you talk to me?" | ||
>>> inputs = tokenizer(prompt, return_tensors="pt") | ||
|
||
>>> # Generate | ||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | ||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | ||
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | ||
```""" | ||
logger = logging.get_logger(__name__) | ||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | ||
output_hidden_states = ( | ||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | ||
) | ||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
|
||
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. | ||
if output_attentions: | ||
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") | ||
output_attentions = False | ||
if output_hidden_states: | ||
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") | ||
output_hidden_states = False | ||
|
||
if shard_config.sequence_parallelism_mode == "ring_attn" and shard_config.parallel_output: | ||
# Split labels in a zigzag fashion too | ||
sp_group = shard_config.sequence_parallel_process_group | ||
if attention_mask.bool().all(): | ||
labels = split_batch_zigzag(labels, sp_group, seq_dim=1, is_label=True) | ||
else: | ||
# [B, max_seqlen // sp_size] | ||
labels, _, _ = RingAttention.prepare_varlen_batch(attention_mask, sp_group, labels, is_label=True) | ||
|
||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | ||
outputs = Gemma2PipelineForwards.gemma2_model_forward( | ||
self.model, | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
use_cache=use_cache, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict, | ||
cache_position=cache_position, | ||
stage_manager=stage_manager, | ||
hidden_states=hidden_states, | ||
stage_index=stage_index, | ||
shard_config=shard_config, | ||
force_sp_gather=False, | ||
) | ||
past_key_values = None | ||
|
||
disable_pp = stage_manager is None | ||
if disable_pp or stage_manager.is_last_stage(): | ||
hidden_states = outputs[0] | ||
logits = self.lm_head(hidden_states) | ||
loss = None | ||
if labels is not None: | ||
loss = dist_cross_entropy(labels, logits, shard_config, self.lm_head.out_features, self.model.dtype) | ||
|
||
if not return_dict: | ||
output = (logits,) + outputs[1:] | ||
return (loss,) + output if loss is not None else output | ||
|
||
return CausalLMOutputWithPast( | ||
loss=loss, | ||
logits=logits, | ||
past_key_values=outputs.past_key_values, | ||
hidden_states=outputs.hidden_states, | ||
attentions=outputs.attentions, | ||
) | ||
else: | ||
hidden_states = outputs.get("hidden_states") | ||
return {"hidden_states": hidden_states} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We don't need this? The main branch seems to work
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this can be removed here.
but this is another bug, this did not work when you train llama3, llama3.1, llama3.2
https://github.com/hpcaitech/ColossalAI/blob/main/examples/language/llama/benchmark.py
i hope you can try this, and use HybridParallelPlugin
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'm not sure what you refer to,
colossalai run --nproc_per_node 2 --master_port 29501 benchmark.py -p 3d -b 1 -g --zero 2
(flash attn disabled, so go into this if branch) doesn't throw any error.Are you using the right
transformers
version?To justify such changes and save time, please provide a command to easily reproduce the error.