Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the Mixtral model. #1437

Merged
merged 13 commits into from
Dec 15, 2023
25 changes: 25 additions & 0 deletions candle-examples/examples/mixtral/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# candle-mixtral: 8x7b LLM using a sparse mixture of experts.

Mixtral-8x7B-v0.1 is a pretrained generative LLM with 56 billion parameters.

- [Blog post](https://mistral.ai/news/mixtral-of-experts/) from Mistral announcing the model release.
- [Model card](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on the HuggingFace Hub.

## Running the example

```bash
$ cargo run --example mixtral --release -- --prompt "def print_prime(n): "
def print_prime(n): # n is the number of prime numbers to be printed
i = 2
count = 0
while (count < n):
if (isPrime(i)):
print(i)
count += 1
i += 1

def isPrime(n):
for x in range(2, int(n**0.5)+1):
if (n % x == 0):
...
```
263 changes: 263 additions & 0 deletions candle-examples/examples/mixtral/main.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,263 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;

#[cfg(feature = "accelerate")]
extern crate accelerate_src;

use anyhow::{Error as E, Result};
use clap::Parser;

use candle_transformers::models::mixtral::{Config, Model};

use candle::{DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;

struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}

impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}

fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;

let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("</s>") {
Some(token) => token,
None => anyhow::bail!("cannot find the </s> token"),
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, start_pos)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};

let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}

#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,

/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,

#[arg(long)]
use_flash_attn: bool,

#[arg(long)]
prompt: String,

/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,

/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,

/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,

/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 100)]
sample_len: usize,

#[arg(long, default_value = "mistralai/Mixtral-8x7B-v0.1")]
model_id: String,

#[arg(long, default_value = "main")]
revision: String,

#[arg(long)]
tokenizer_file: Option<String>,

#[arg(long)]
weight_files: Option<String>,

/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,

/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}

fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;

let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);

let start = std::time::Instant::now();
let api = Api::new()?;
let repo = api.repo(Repo::with_revision(
args.model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = match args.tokenizer_file {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("tokenizer.json")?,
};
let filenames = match args.weight_files {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => {
vec![
repo.get("model-00001-of-00019.safetensors")?,
repo.get("model-00002-of-00019.safetensors")?,
repo.get("model-00003-of-00019.safetensors")?,
repo.get("model-00004-of-00019.safetensors")?,
repo.get("model-00005-of-00019.safetensors")?,
repo.get("model-00006-of-00019.safetensors")?,
repo.get("model-00007-of-00019.safetensors")?,
repo.get("model-00008-of-00019.safetensors")?,
repo.get("model-00009-of-00019.safetensors")?,
repo.get("model-00010-of-00019.safetensors")?,
repo.get("model-00011-of-00019.safetensors")?,
repo.get("model-00012-of-00019.safetensors")?,
repo.get("model-00013-of-00019.safetensors")?,
repo.get("model-00014-of-00019.safetensors")?,
repo.get("model-00015-of-00019.safetensors")?,
repo.get("model-00016-of-00019.safetensors")?,
repo.get("model-00017-of-00019.safetensors")?,
repo.get("model-00018-of-00019.safetensors")?,
repo.get("model-00019-of-00019.safetensors")?,
]
}
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;

let start = std::time::Instant::now();
let config = Config::v0_1_8x7b(args.use_flash_attn);
let device = candle_examples::device(args.cpu)?;
let dtype = if device.is_cuda() {
DType::BF16
} else {
DType::F32
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());

let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}
Loading
Loading