Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add transformers 4.36 tests #2085

Merged
merged 10 commits into from
Nov 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .github/workflows/test_onnxruntime.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,10 @@ jobs:
fail-fast: false
matrix:
transformers-version: ["latest"]
os: [ubuntu-20.04, windows-2019, macos-13]
os: [ubuntu-20.04, windows-2019, macos-15]
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

upgraded to fix https://github.com/huggingface/optimum/actions/runs/11577705976/job/32244088802 resulting from scaled_dot_product_attention onnx export failing that should be fixed in torch v2.5 (pytorch/pytorch#135615. Currently torch v2.2 is installed (latest supported version for x86 pytorch/pytorch#114602)

include:
- transformers-version: "4.36.*"
os: ubuntu-20.04
- transformers-version: "4.45.*"
os: ubuntu-20.04

Expand Down
4 changes: 3 additions & 1 deletion optimum/exporters/onnx/model_configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,7 @@ class Qwen2OnnxConfig(LlamaOnnxConfig):
class GemmaOnnxConfig(LlamaOnnxConfig):
DUMMY_INPUT_GENERATOR_CLASSES = (DummyTextInputGenerator, GemmaDummyPastKeyValuesGenerator)
DUMMY_PKV_GENERATOR_CLASS = GemmaDummyPastKeyValuesGenerator
pass
MIN_TRANSFORMERS_VERSION = version.parse("4.38.0")


class GraniteOnnxConfig(LlamaOnnxConfig):
Expand Down Expand Up @@ -348,6 +348,8 @@ def patch_model_for_export(
class MPTOnnxConfig(TextDecoderOnnxConfig):
# MPT does not require position_ids input.
DEFAULT_ONNX_OPSET = 13
# TODO: fix inference for transformers < v4.41 for beam_search > 1
MIN_TRANSFORMERS_VERSION = version.parse("4.41.0")
NORMALIZED_CONFIG_CLASS = NormalizedTextConfig.with_args(
num_attention_heads="n_heads", hidden_size="d_model", num_layers="n_layers"
)
Expand Down
10 changes: 5 additions & 5 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@
"datasets>=1.2.1",
"evaluate",
"protobuf>=3.20.1",
"transformers<4.47.0",
"transformers>=4.36,<4.47.0",
],
"onnxruntime-gpu": [
"onnx",
Expand All @@ -63,19 +63,19 @@
"evaluate",
"protobuf>=3.20.1",
"accelerate", # ORTTrainer requires it.
"transformers<4.47.0",
"transformers>=4.36,<4.47.0",
],
"exporters": [
"onnx",
"onnxruntime",
"timm",
"transformers<4.47.0",
"transformers>=4.36,<4.47.0",
],
"exporters-gpu": [
"onnx",
"onnxruntime-gpu",
"timm",
"transformers<4.47.0",
"transformers>=4.36,<4.47.0",
],
"exporters-tf": [
"tensorflow>=2.4,<=2.12.1",
Expand All @@ -86,7 +86,7 @@
"h5py",
"numpy<1.24.0",
"datasets<=2.16",
"transformers>=4.26,<4.38",
"transformers>=4.36,<4.38",
],
"diffusers": ["diffusers"],
"intel": "optimum-intel>=1.18.0",
Expand Down
37 changes: 22 additions & 15 deletions tests/onnxruntime/test_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -2318,21 +2318,28 @@ class ORTModelForCausalLMIntegrationTest(ORTModelTestMixin):
"bloom",
"codegen",
"falcon",
"gemma",
"gpt2",
"gpt_bigcode",
"gpt_neo",
"gpt_neox",
"gptj",
"granite",
"llama",
"mistral",
"mpt",
"opt",
]

if check_if_transformers_greater("4.40"):
SUPPORTED_ARCHITECTURES.extend(["gemma", "phi3", "qwen2"])
if check_if_transformers_greater("4.37"):
SUPPORTED_ARCHITECTURES.append("qwen2")

if check_if_transformers_greater("4.38"):
SUPPORTED_ARCHITECTURES.append("gemma")

# TODO: fix "mpt" for which inference fails for transformers < v4.41
if check_if_transformers_greater("4.41"):
SUPPORTED_ARCHITECTURES.extend(["phi3", "mpt"])

if check_if_transformers_greater("4.45"):
SUPPORTED_ARCHITECTURES.append("granite")

FULL_GRID = {
"model_arch": SUPPORTED_ARCHITECTURES,
Expand Down Expand Up @@ -2445,7 +2452,7 @@ def test_compare_to_transformers(self, test_name: str, model_arch: str, use_cach
transformers_model = AutoModelForCausalLM.from_pretrained(model_id)
transformers_model = transformers_model.eval()
tokenizer = get_preprocessor(model_id)
tokens = tokenizer("This is a sample output", return_tensors="pt")
tokens = tokenizer("This is a sample input", return_tensors="pt")
position_ids = None
if model_arch.replace("_", "-") in MODEL_TYPES_REQUIRING_POSITION_IDS:
input_shape = tokens["input_ids"].shape
Expand All @@ -2467,7 +2474,7 @@ def test_compare_to_transformers(self, test_name: str, model_arch: str, use_cach
# Compare batched generation.
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
tokens = tokenizer(["Today is a nice day and I am longer", "This is me"], return_tensors="pt", padding=True)
tokens = tokenizer(["This is", "This is a sample input"], return_tensors="pt", padding=True)
onnx_model.generation_config.eos_token_id = None
transformers_model.generation_config.eos_token_id = None
onnx_model.config.eos_token_id = None
Expand Down Expand Up @@ -4598,14 +4605,14 @@ def test_compare_with_and_without_past_key_values(self, model_arch: str):
)

self.assertTrue(torch.equal(outputs_model_with_pkv, outputs_model_without_pkv))
self.assertEqual(
outputs_model_with_pkv.shape[1],
self.GENERATION_LENGTH + 2 if model_arch == "whisper" else self.GENERATION_LENGTH + 1,
)
self.assertEqual(
outputs_model_without_pkv.shape[1],
self.GENERATION_LENGTH + 2 if model_arch == "whisper" else self.GENERATION_LENGTH + 1,
)

if model_arch == "whisper" and check_if_transformers_greater("4.43"):
gen_length = self.GENERATION_LENGTH + 2
else:
gen_length = self.GENERATION_LENGTH + 1

self.assertEqual(outputs_model_with_pkv.shape[1], gen_length)
self.assertEqual(outputs_model_without_pkv.shape[1], gen_length)

self.GENERATION_LENGTH = generation_length
if os.environ.get("TEST_LEVEL", 0) == "1":
Expand Down
Loading