Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Scale loss before backward #35207

Merged
merged 3 commits into from
Dec 23, 2024
Merged

Conversation

qgallouedec
Copy link
Member

What does this PR do?

Fixes huggingface/trl#2456

Before submitting

  • This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
  • Did you read the contributor guideline,
    Pull Request section?
  • Was this discussed/approved via a Github issue or the forum? Please add a link
    to it if that's the case.
  • Did you make sure to update the documentation with your changes? Here are the
    documentation guidelines, and
    here are tips on formatting docstrings.
  • Did you write any new necessary tests?

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@qgallouedec qgallouedec marked this pull request as ready for review December 11, 2024 11:15
Copy link
Contributor

@muellerzr muellerzr left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This one feels more like the right solution. Do the slow tests pass under this? (There is one in there for grad accum)

Copy link
Contributor

@muellerzr muellerzr left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes because in reality this is exactly the right solution: since we are no longer relying on accelerate to div the loss, we need to do so before backward() if we don't know our num items in the batch

Copy link
Member

@SunMarc SunMarc left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM !

@qgallouedec
Copy link
Member Author

qgallouedec commented Dec 11, 2024

Do the slow tests pass under this?

They pass locally. I get errors but I think they aren't related:

============================== short test summary info ==============================
FAILED tests/trainer/test_trainer.py::TrainerIntegrationTest::test_auto_batch_size_finder - AttributeError: 'DownloadConfig' object has no attribute 'use_auth_token'
FAILED tests/trainer/test_trainer.py::TrainerIntegrationTest::test_auto_batch_size_with_deepspeed - ModuleNotFoundError: No module named 'mpi4py'
FAILED tests/trainer/test_trainer.py::TrainerIntegrationTest::test_use_liger_kernel_patching - AssertionError: False is not true
FAILED tests/trainer/test_trainer_seq2seq.py::Seq2seqTrainerTester::test_finetune_bert2bert - TypeError: BertModel.forward() got an unexpected keyword argument 'num_items_in_batch'
======== 4 failed, 250 passed, 82 skipped, 89 warnings in 203.93s (0:03:23) =========

@qgallouedec
Copy link
Member Author

@ArthurZucker @muellerzr @SunMarc I'll let you merge when you think it's good.

@ArthurZucker
Copy link
Collaborator

Merging! 🤗

@ArthurZucker ArthurZucker merged commit 3cd3cd5 into main Dec 23, 2024
23 of 25 checks passed
@ArthurZucker ArthurZucker deleted the fix_grad_norm_no_num_item_in_batch branch December 23, 2024 15:16
haotongl pushed a commit to haotongl/transformers that referenced this pull request Dec 23, 2024
@yzhangcs
Copy link

yzhangcs commented Dec 25, 2024

@qgallouedec @SunMarc @ArthurZucker @muellerzr
Hi, I've identified that there still exists a potential issue with the loss reporting in the Trainer class.
The problem appears to stem from changes introduced after version 4.45.2, specifically in this line:

loss /= self.args.gradient_accumulation_steps

The current implementation only divides the loss scalar when num_items_in_batch is None. However, I believe we should divide the loss scalar regardless of the num_items_in_batch value, as was the case in transformers<=4.45.2.
This change has led to an unexpected doubling of the logged loss when gradient_accumulated_steps > 1.
You can observe the differences by comparing versions:
v4.45.2...v4.46.0.

@yzhangcs
Copy link

@qgallouedec Hello, not sure If I understand correctly, does this commit mean gradient_accumulated_steps will never take effect, as num_items_in_batch always be calculated?

@yzhangcs
Copy link

@qgallouedec Just wondering have you observed consistant hehaviors in

huggingface/trl#2456

when switching from transformers v4.45.2 to v4.46
I think this two are quite different regarding loss with gradient accumulation.

@qgallouedec
Copy link
Member Author

qgallouedec commented Dec 26, 2024

I think you're wrong @yzhangcs:

if I apply your modification:

- if num_items_in_batch is None:
-     loss = loss / self.args.gradient_accumulation_steps
+ loss = loss / self.args.gradient_accumulation_steps

and run the following script with

  • gradient_accumulation_steps = 2 and per_device_train_batch_size = 3
  • gradient_accumulation_steps = 1 and per_device_train_batch_size = 6
import torch
from transformers import AutoModelForCausalLM, Trainer, TrainingArguments
from datasets import Dataset

num_batch = 32
gradient_accumulation_steps = 2  # or 1
per_device_train_batch_size = 3  # or 6
seq_len = 5

eff_batch_size = per_device_train_batch_size * gradient_accumulation_steps
dataset_len = num_batch * eff_batch_size

data = torch.arange(0, dataset_len * seq_len)
data = data.reshape(dataset_len, seq_len)
data = data.tolist()

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-1.5B").to("cuda")
dataset = Dataset.from_dict({"input_ids": data, "labels": data})

args = TrainingArguments(
    output_dir=f"out_bs_{batch_size}_grad_{grad_accum_steps}_before",
    per_device_train_batch_size= per_device_train_batch_size,
    gradient_accumulation_steps= gradient_accumulation_steps,
    logging_steps=2,
)

trainer = Trainer(model=model, args=args, train_dataset=dataset)

trainer.train()

You get the following results:

Without the modification (current main)

Screenshot 2024-12-26 at 12 22 24

With the modif

Screenshot 2024-12-26 at 12 22 32

After the suggested modification, altering the gradient accumulation steps alter the results. While before the modification, everything overlap nicely.

@yzhangcs
Copy link

yzhangcs commented Dec 29, 2024

@qgallouedec Hi, thank you for sharing these easy-to-run scripts!
I successfully ran them on my machine with 4 GPUs.
The good news is that I found the loss to be consistent when varying the grad_accum and bsz.
However, the bad news is that I noticed significant differences in the loss when switching between versions v4.45.2 and v4.47.

FYI

For v4.45.2, everything seems fine across different settings:

gradient_accumulation_steps=1, per_device_train_batch_size=6

{'loss': 10.5949, 'grad_norm': 188.29049682617188, 'learning_rate': 4.5833333333333334e-05, 'epoch': 0.25}                                                                                                             
{'loss': 8.2312, 'grad_norm': 87.74673461914062, 'learning_rate': 4.166666666666667e-05, 'epoch': 0.5}                                                                                                                 
{'loss': 7.8988, 'grad_norm': 74.35655212402344, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.75}                                                                                                               
{'loss': 8.0197, 'grad_norm': 52.913124084472656, 'learning_rate': 3.3333333333333335e-05, 'epoch': 1.0}                                                                                                               
{'loss': 6.0704, 'grad_norm': 51.57878875732422, 'learning_rate': 2.916666666666667e-05, 'epoch': 1.25}                                                                                                                
{'loss': 5.8247, 'grad_norm': 56.05608367919922, 'learning_rate': 2.5e-05, 'epoch': 1.5}                                                                                                                               
{'loss': 5.9932, 'grad_norm': 50.10258483886719, 'learning_rate': 2.0833333333333336e-05, 'epoch': 1.75}                                                                                                               
{'loss': 5.3769, 'grad_norm': 65.85218811035156, 'learning_rate': 1.6666666666666667e-05, 'epoch': 2.0}                                                                                                                
{'loss': 4.1261, 'grad_norm': 62.63885498046875, 'learning_rate': 1.25e-05, 'epoch': 2.25}                                                                                                                             
{'loss': 3.5956, 'grad_norm': 67.01679229736328, 'learning_rate': 8.333333333333334e-06, 'epoch': 2.5}                                                                                                                 
{'loss': 3.5619, 'grad_norm': 72.61600494384766, 'learning_rate': 4.166666666666667e-06, 'epoch': 2.75}                                                                                                                
{'loss': 3.6611, 'grad_norm': 67.8575439453125, 'learning_rate': 0.0, 'epoch': 3.0}                                                                                                                                    
{'train_runtime': 56.5843, 'train_samples_per_second': 10.179, 'train_steps_per_second': 0.424, 'train_loss': 6.079538067181905, 'epoch': 3.0}                                                                         
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 24/24 [00:55<00:00,  2.30s/it]

gradient_accumulation_steps=2, per_device_train_batch_size=3

{'loss': 10.5949, 'grad_norm': 188.28981018066406, 'learning_rate': 4.5833333333333334e-05, 'epoch': 0.25}                                                                                                             
{'loss': 8.2312, 'grad_norm': 87.7468032836914, 'learning_rate': 4.166666666666667e-05, 'epoch': 0.5}                                                                                                                  
{'loss': 7.8988, 'grad_norm': 74.3565444946289, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.75}                                                                                                                
{'loss': 8.0197, 'grad_norm': 52.91275405883789, 'learning_rate': 3.3333333333333335e-05, 'epoch': 1.0}                                                                                                                
{'loss': 6.0704, 'grad_norm': 51.57986068725586, 'learning_rate': 2.916666666666667e-05, 'epoch': 1.25}                                                                                                                
{'loss': 5.8247, 'grad_norm': 56.05683898925781, 'learning_rate': 2.5e-05, 'epoch': 1.5}                                                                                                                               
{'loss': 5.9932, 'grad_norm': 50.103092193603516, 'learning_rate': 2.0833333333333336e-05, 'epoch': 1.75}                                                                                                              
{'loss': 5.3769, 'grad_norm': 65.85319519042969, 'learning_rate': 1.6666666666666667e-05, 'epoch': 2.0}                                                                                                                
{'loss': 4.1261, 'grad_norm': 62.63907241821289, 'learning_rate': 1.25e-05, 'epoch': 2.25}                                                                                                                             
{'loss': 3.5956, 'grad_norm': 67.01693725585938, 'learning_rate': 8.333333333333334e-06, 'epoch': 2.5}                                                                                                                 
{'loss': 3.562, 'grad_norm': 72.61691284179688, 'learning_rate': 4.166666666666667e-06, 'epoch': 2.75}                                                                                                                 
{'loss': 3.6611, 'grad_norm': 67.85787963867188, 'learning_rate': 0.0, 'epoch': 3.0}                                                                                                                                   
{'train_runtime': 62.5724, 'train_samples_per_second': 9.205, 'train_steps_per_second': 0.384, 'train_loss': 6.079543709754944, 'epoch': 3.0}                                                                          
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 24/24 [01:01<00:00,  2.55s/it]

When I switched to v4.47.0, the first setting remained the same as in v4.45.2:

gradient_accumulation_steps=1, per_device_train_batch_size=6

{'loss': 10.5949, 'grad_norm': 188.29049682617188, 'learning_rate': 4.5833333333333334e-05, 'epoch': 0.25}                                                                                                             
{'loss': 8.2312, 'grad_norm': 87.74673461914062, 'learning_rate': 4.166666666666667e-05, 'epoch': 0.5}                                                                                                                 
{'loss': 7.8988, 'grad_norm': 74.35655212402344, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.75}                                                                                                               
{'loss': 8.0197, 'grad_norm': 52.913124084472656, 'learning_rate': 3.3333333333333335e-05, 'epoch': 1.0}                                                                                                               
{'loss': 6.0704, 'grad_norm': 51.57878875732422, 'learning_rate': 2.916666666666667e-05, 'epoch': 1.25}                                                                                                                
{'loss': 5.8247, 'grad_norm': 56.05608367919922, 'learning_rate': 2.5e-05, 'epoch': 1.5}                                                                                                                               
{'loss': 5.9932, 'grad_norm': 50.10258483886719, 'learning_rate': 2.0833333333333336e-05, 'epoch': 1.75}                                                                                                               
{'loss': 5.3769, 'grad_norm': 65.85218811035156, 'learning_rate': 1.6666666666666667e-05, 'epoch': 2.0}                                                                                                                
{'loss': 4.1261, 'grad_norm': 62.63885498046875, 'learning_rate': 1.25e-05, 'epoch': 2.25}                                                                                                                             
{'loss': 3.5956, 'grad_norm': 67.01679229736328, 'learning_rate': 8.333333333333334e-06, 'epoch': 2.5}                                                                                                                 
{'loss': 3.5619, 'grad_norm': 72.61600494384766, 'learning_rate': 4.166666666666667e-06, 'epoch': 2.75}                                                                                                                
{'loss': 3.6611, 'grad_norm': 67.8575439453125, 'learning_rate': 0.0, 'epoch': 3.0}                                                                                                                                    
{'train_runtime': 56.4532, 'train_samples_per_second': 10.203, 'train_steps_per_second': 0.425, 'train_loss': 6.079538067181905, 'epoch': 3.0}                                                                         
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 24/24 [00:55<00:00,  2.29s/it]

However, the results changed significantly for larger gradient accumulation steps:

gradient_accumulation_steps=2, per_device_train_batch_size=3

{'loss': 21.1898, 'grad_norm': 376.5796203613281, 'learning_rate': 4.5833333333333334e-05, 'epoch': 0.25}                                                                                                              
{'loss': 16.4623, 'grad_norm': 175.4936065673828, 'learning_rate': 4.166666666666667e-05, 'epoch': 0.5}                                                                                                                
{'loss': 15.7976, 'grad_norm': 148.7130889892578, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.75}                                                                                                              
{'loss': 16.0394, 'grad_norm': 105.82550811767578, 'learning_rate': 3.3333333333333335e-05, 'epoch': 1.0}                                                                                                              
{'loss': 12.1408, 'grad_norm': 103.15972137451172, 'learning_rate': 2.916666666666667e-05, 'epoch': 1.25}                                                                                                              
{'loss': 11.6494, 'grad_norm': 112.11367797851562, 'learning_rate': 2.5e-05, 'epoch': 1.5}                                                                                                                             
{'loss': 11.9865, 'grad_norm': 100.20618438720703, 'learning_rate': 2.0833333333333336e-05, 'epoch': 1.75}                                                                                                             
{'loss': 10.7537, 'grad_norm': 131.70639038085938, 'learning_rate': 1.6666666666666667e-05, 'epoch': 2.0}                                                                                                              
{'loss': 8.2522, 'grad_norm': 125.27814483642578, 'learning_rate': 1.25e-05, 'epoch': 2.25}                                                                                                                            
{'loss': 7.1912, 'grad_norm': 134.03387451171875, 'learning_rate': 8.333333333333334e-06, 'epoch': 2.5}                                                                                                                
{'loss': 7.1239, 'grad_norm': 145.23382568359375, 'learning_rate': 4.166666666666667e-06, 'epoch': 2.75}                                                                                                               
{'loss': 7.3222, 'grad_norm': 135.71575927734375, 'learning_rate': 0.0, 'epoch': 3.0}                                                                                                                                  
{'train_runtime': 64.6658, 'train_samples_per_second': 8.907, 'train_steps_per_second': 0.371, 'train_loss': 12.159087419509888, 'epoch': 3.0}                                                                         
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 24/24 [01:03<00:00,  2.63s/it]

After upgrading to the latest v4.47.1 and higher (including your new commit), the loss is the same across different grad accum steps
gradient_accumulation_steps=1, per_device_train_batch_size=6

{'loss': 2.119, 'grad_norm': 37.658103942871094, 'learning_rate': 4.5833333333333334e-05, 'epoch': 0.25}                                                                                                               
{'loss': 1.6462, 'grad_norm': 17.549333572387695, 'learning_rate': 4.166666666666667e-05, 'epoch': 0.5}                                                                                                                
{'loss': 1.5798, 'grad_norm': 14.87132740020752, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.75}                                                                                                               
{'loss': 1.6039, 'grad_norm': 10.582618713378906, 'learning_rate': 3.3333333333333335e-05, 'epoch': 1.0}                                                                                                               
{'loss': 1.2141, 'grad_norm': 10.315776824951172, 'learning_rate': 2.916666666666667e-05, 'epoch': 1.25}                                                                                                               
{'loss': 1.1649, 'grad_norm': 11.211206436157227, 'learning_rate': 2.5e-05, 'epoch': 1.5}                                                                                                                              
{'loss': 1.1986, 'grad_norm': 10.020527839660645, 'learning_rate': 2.0833333333333336e-05, 'epoch': 1.75}                                                                                                              
{'loss': 1.0754, 'grad_norm': 13.170440673828125, 'learning_rate': 1.6666666666666667e-05, 'epoch': 2.0}                                                                                                               
{'loss': 0.8252, 'grad_norm': 12.527780532836914, 'learning_rate': 1.25e-05, 'epoch': 2.25}                                                                                                                            
{'loss': 0.7191, 'grad_norm': 13.403361320495605, 'learning_rate': 8.333333333333334e-06, 'epoch': 2.5}                                                                                                                
{'loss': 0.7124, 'grad_norm': 14.523214340209961, 'learning_rate': 4.166666666666667e-06, 'epoch': 2.75}                                                                                                               
{'loss': 0.7322, 'grad_norm': 13.57152271270752, 'learning_rate': 0.0, 'epoch': 3.0}                                                                                                                                   
{'train_runtime': 58.3558, 'train_samples_per_second': 9.87, 'train_steps_per_second': 0.411, 'train_loss': 1.2159071018298466, 'epoch': 3.0}                                                                          
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 24/24 [00:56<00:00,  2.37s/it]

gradient_accumulation_steps=2, per_device_train_batch_size=3

{'loss': 2.119, 'grad_norm': 37.657958984375, 'learning_rate': 4.5833333333333334e-05, 'epoch': 0.25}                                                                                                                  
{'loss': 1.6462, 'grad_norm': 17.54932403564453, 'learning_rate': 4.166666666666667e-05, 'epoch': 0.5}                                                                                                                 
{'loss': 1.5798, 'grad_norm': 14.871335983276367, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.75}                                                                                                              
{'loss': 1.6039, 'grad_norm': 10.582595825195312, 'learning_rate': 3.3333333333333335e-05, 'epoch': 1.0}                                                                                                               
{'loss': 1.2141, 'grad_norm': 10.315934181213379, 'learning_rate': 2.916666666666667e-05, 'epoch': 1.25}                                                                                                               
{'loss': 1.1649, 'grad_norm': 11.211311340332031, 'learning_rate': 2.5e-05, 'epoch': 1.5}                                                                                                                              
{'loss': 1.1986, 'grad_norm': 10.020581245422363, 'learning_rate': 2.0833333333333336e-05, 'epoch': 1.75}                                                                                                              
{'loss': 1.0754, 'grad_norm': 13.170597076416016, 'learning_rate': 1.6666666666666667e-05, 'epoch': 2.0}                                                                                                               
{'loss': 0.8252, 'grad_norm': 12.527819633483887, 'learning_rate': 1.25e-05, 'epoch': 2.25}                                                                                                                            
{'loss': 0.7191, 'grad_norm': 13.403372764587402, 'learning_rate': 8.333333333333334e-06, 'epoch': 2.5}                                                                                                                
{'loss': 0.7124, 'grad_norm': 14.523296356201172, 'learning_rate': 4.166666666666667e-06, 'epoch': 2.75}                                                                                                               
{'loss': 0.7322, 'grad_norm': 13.571563720703125, 'learning_rate': 0.0, 'epoch': 3.0}                                                                                                                                  
{'train_runtime': 64.584, 'train_samples_per_second': 8.919, 'train_steps_per_second': 0.372, 'train_loss': 1.2159080157677333, 'epoch': 3.0}                                                                          
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 24/24 [01:03<00:00,  2.63s/it]

But is quite different compared to v4.45.2

@yzhangcs
Copy link

I'm not entirely sure where the questions are arising, so I'm diving into the details of the Trainer. I'll keep you updated as soon as I have more information.

@Doraemonzzz
Copy link

Encountered a similar issue when running the above script.
transformers=4.47.0:

{'loss': 22.5655, 'grad_norm': 495.53765869140625, 'learning_rate': 4.791666666666667e-05, 'epoch': 0.12}                                                                                                                               
{'loss': 16.8421, 'grad_norm': 284.22906494140625, 'learning_rate': 4.5833333333333334e-05, 'epoch': 0.25}                                                                                                                              
{'loss': 16.2376, 'grad_norm': 177.2020721435547, 'learning_rate': 4.375e-05, 'epoch': 0.38}                                                                                                                                            
{'loss': 15.8786, 'grad_norm': 199.05421447753906, 'learning_rate': 4.166666666666667e-05, 'epoch': 0.5}                                                                                                                                
{'loss': 16.4592, 'grad_norm': 178.1647491455078, 'learning_rate': 3.958333333333333e-05, 'epoch': 0.62}                                                                                                                                
{'loss': 15.2518, 'grad_norm': 179.19195556640625, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.75}                                                                                                                              
{'loss': 15.9623, 'grad_norm': 126.81049346923828, 'learning_rate': 3.541666666666667e-05, 'epoch': 0.88}                                                                                                                               
{'loss': 15.7668, 'grad_norm': 120.61547088623047, 'learning_rate': 3.3333333333333335e-05, 'epoch': 1.0}

transformers=4.44.2:

{'loss': 11.2828, 'grad_norm': 247.76889038085938, 'learning_rate': 4.791666666666667e-05, 'epoch': 0.12}                                                                                                                               
{'loss': 8.421, 'grad_norm': 142.11448669433594, 'learning_rate': 4.5833333333333334e-05, 'epoch': 0.25}                                                                                                                                
{'loss': 8.1188, 'grad_norm': 88.60110473632812, 'learning_rate': 4.375e-05, 'epoch': 0.38}                                                                                                                                             
{'loss': 7.9393, 'grad_norm': 99.52731323242188, 'learning_rate': 4.166666666666667e-05, 'epoch': 0.5}                                                                                                                                  
{'loss': 8.2296, 'grad_norm': 89.08261108398438, 'learning_rate': 3.958333333333333e-05, 'epoch': 0.62}                                                                                                                                 
{'loss': 7.6259, 'grad_norm': 89.5963134765625, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.75}                                                                                                                                 
{'loss': 7.9811, 'grad_norm': 63.40541458129883, 'learning_rate': 3.541666666666667e-05, 'epoch': 0.88}                                                                                                                                 
{'loss': 7.8834, 'grad_norm': 60.307289123535156, 'learning_rate': 3.3333333333333335e-05, 'epoch': 1.0}  

@qgallouedec
Copy link
Member Author

Yes, probably related to the grad accum issue see #34198. As mentionned above, I think that everything works as expected with the dev version

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Probaly mistake in DPOTrainer when compute/log grad_norm
7 participants