Paddle training code and pretrained models for DETR (DEtection TRansformer). This code is modified from original project to make it compatible with Paddle.
Original project: DETR(pytorch)
Paper: End-to-End Object Detection with Transformers
If this work is useful to you, please cite:
@INPROCEEDINGS{DETR,
title={End-to-End Object Detection with Transformers},
author={Nicolas Carion and Francisco Massa and Gabriel Synnaeve and Nicolas Usunier and Alexander Kirillov and Sergey Zagoruyko},
year={2020},
booktitle={ECCV}
}
- This project provided DETR training code in Paddle.
- This project provided pretrained models converted from Pytorch version.
- This project analysis and visualize the model outputs.
name | backbone | schedule | inf_time | box AP | url | size | paddle model | ||
---|---|---|---|---|---|---|---|---|---|
0 | DETR | R50 | 500 | 0.036 | 42.0 | model | logs | 159Mb | detr.pdparams | |
2 | DETR | R101 | 500 | 0.050 | 43.5 | model | logs | 232Mb | detr.pdparams |
Warning: this code need to optimize, model is very memory-comsuming!!!
Train COCO 2017
-
unzip dataset, run
cd /home/aistudio/data/data7122/ && unzip train2017.zip && unzip val2017.zip && unzip annotations_trainval2017.zip
. -
run
cd ../../detr && python ./main.py --dataset_file coco
Train Visual Genome
- unzip dataset,
cd /home/aistudio/data/data57396 && zip -s 0 full_images.zip --out image.zip && unzip image.zip && unzip v1.0.zip
- run
cd ../../detr && python ./main.py --dataset_file vg
! cd /home/aistudio/data/data57355/ && unzip json_dataset.zip
! clear
! cd /home/aistudio/data/data57355/ && unzip sg_dataset.zip
! clear
! cd /home/aistudio/data/data57355/sg_dataset/sg_test_images/ && mv ./4392556686_44d71ff5a0_o.* ./4392556686_44d71ff5a0_o.jpg
cd ../../detr && python ./main.py --dataset_file vrd