Skip to content

huochf/DETR-Paddle

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DETR: An End-to-end Object DEtector using TRansformer

About the code

Paddle training code and pretrained models for DETR (DEtection TRansformer). This code is modified from original project to make it compatible with Paddle.

Original project: DETR(pytorch)

Paper: End-to-End Object Detection with Transformers

Aistudio Project

If this work is useful to you, please cite:

@INPROCEEDINGS{DETR,
title={End-to-End Object Detection with Transformers},
author={Nicolas Carion and Francisco Massa and Gabriel Synnaeve and Nicolas Usunier and Alexander Kirillov and Sergey Zagoruyko},
year={2020},
booktitle={ECCV}
}

Contributions:

  • This project provided DETR training code in Paddle.
  • This project provided pretrained models converted from Pytorch version.
  • This project analysis and visualize the model outputs.

Model Zoo

name backbone schedule inf_time box AP url size paddle model
0 DETR R50 500 0.036 42.0 model | logs 159Mb detr.pdparams
2 DETR R101 500 0.050 43.5 model | logs 232Mb detr.pdparams

Train - Object detection

Warning: this code need to optimize, model is very memory-comsuming!!!

Train COCO 2017

  1. unzip dataset, run cd /home/aistudio/data/data7122/ && unzip train2017.zip && unzip val2017.zip && unzip annotations_trainval2017.zip.

  2. run cd ../../detr && python ./main.py --dataset_file coco

  1. unzip dataset, cd /home/aistudio/data/data57396 && zip -s 0 full_images.zip --out image.zip && unzip image.zip && unzip v1.0.zip
  2. run cd ../../detr && python ./main.py --dataset_file vg
! cd /home/aistudio/data/data57355/ && unzip json_dataset.zip
! clear
! cd /home/aistudio/data/data57355/ && unzip sg_dataset.zip
! clear
! cd /home/aistudio/data/data57355/sg_dataset/sg_test_images/ && mv ./4392556686_44d71ff5a0_o.* ./4392556686_44d71ff5a0_o.jpg
  1. cd ../../detr && python ./main.py --dataset_file vrd

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages