Skip to content

Commit

Permalink
Adding PC-Droid (#196)
Browse files Browse the repository at this point in the history
  • Loading branch information
Johnny Raine authored Nov 8, 2023
1 parent 229b988 commit 7f647ba
Show file tree
Hide file tree
Showing 4 changed files with 13 additions and 1 deletion.
10 changes: 10 additions & 0 deletions HEPML.bib
Original file line number Diff line number Diff line change
Expand Up @@ -1061,6 +1061,16 @@ @inproceedings{Rabemananjara:2023xfq
year = "2023"
}

@article{Leigh:2023zle,
author = "Leigh, Matthew and Sengupta, Debajyoti and Raine, John Andrew and Qu\'etant, Guillaume and Golling, Tobias",
title = "{PC-Droid: Faster diffusion and improved quality for particle cloud generation}",
eprint = "2307.06836",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
month = "7",
year = "2023"
}


% Jul. 12, 2023
@article{Forestano:2023ijh,
Expand Down
2 changes: 1 addition & 1 deletion HEPML.tex
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,7 @@
\\\textit{An autoencoder consists of two functions: one that maps $x$ into a latent space $z$ (encoder) and a second one that maps the latent space back into the original space (decoder). The encoder and decoder are simultaneously trained so that their composition is nearly the identity. When the latent space has a well-defined probability density (as in variational autoencoders), then one can sample from the autoencoder by applying the detector to a randomly chosen element of the latent space.}
\item \textbf{Normalizing flows}~\cite{Albergo:2019eim,1800956,Kanwar:2003.06413,Brehmer:2020vwc,Bothmann:2020ywa,Gao:2020zvv,Gao:2020vdv,Nachman:2020lpy,Choi:2020bnf,Lu:2020npg,Bieringer:2020tnw,Hollingsworth:2021sii,Winterhalder:2021ave,Krause:2021ilc,Hackett:2021idh,Menary:2021tjg,Hallin:2021wme,NEURIPS2020_a878dbeb,Vandegar:2020yvw,Jawahar:2021vyu,Bister:2021arb,Krause:2021wez,Butter:2021csz,Winterhalder:2021ngy,Butter:2022lkf,Verheyen:2022tov,Leigh:2022lpn,Chen:2022ytr,Albandea:2022fky,Krause:2022jna,Cresswell:2022tof,Kach:2022qnf,Kach:2022uzq,Dolan:2022ikg,Backes:2022vmn,Heimel:2022wyj,Albandea:2023wgd,Rousselot:2023pcj,Diefenbacher:2023vsw,Nicoli:2023qsl,R:2023dcr,Nachman:2023clf,Raine:2023fko,Golling:2023yjq,Wen:2023oju,Xu:2023xdc,Singha:2023xxq,Buckley:2023rez,Pang:2023wfx,Golling:2023mqx,Reyes-Gonzalez:2023oei,Bickendorf:2023nej,Finke:2023ltw,Bright-Thonney:2023sqf,Albandea:2023ais,Pham:2023bnl,Gavranovic:2023oam}
\\\textit{Normalizing flows~\cite{pmlr-v37-rezende15} learn $p(x)$ explicitly by starting with a simple probability density and then applying a series of bijective transformations with tractable Jacobians.}
\item \textbf{Diffusion Models}~\cite{Mikuni:2022xry,Leigh:2023toe,Mikuni:2023dvk,Shmakov:2023kjj,Buhmann:2023bwk,Butter:2023fov,Mikuni:2023tok,Acosta:2023zik,Imani:2023blb,Amram:2023onf,Diefenbacher:2023flw,Cotler:2023lem,Diefenbacher:2023wec,Mikuni:2023tqg,Hunt-Smith:2023ccp,Buhmann:2023kdg,Buhmann:2023zgc,Buhmann:2023acn,Devlin:2023jzp}
\item \textbf{Diffusion Models}~\cite{Mikuni:2022xry,Leigh:2023toe,Mikuni:2023dvk,Shmakov:2023kjj,Buhmann:2023bwk,Butter:2023fov,Mikuni:2023tok,Acosta:2023zik,Leigh:2023zle,Imani:2023blb,Amram:2023onf,Diefenbacher:2023flw,Cotler:2023lem,Diefenbacher:2023wec,Mikuni:2023tqg,Hunt-Smith:2023ccp,Buhmann:2023kdg,Buhmann:2023zgc,Buhmann:2023acn,Devlin:2023jzp}
\\\textit{These approaches learn the gradient of the density instead of the density directly.}
\item \textbf{Transformer Models}~\cite{Finke:2023veq,Butter:2023fov,Raine:2023fko,Tomiya:2023jdy}
\\\textit{These approaches learn the density or perform generative modeling using transformer-based networks.}
Expand Down
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -1273,6 +1273,7 @@ This review was built with the help of the HEP-ML community, the [INSPIRE REST A
* [Jet Diffusion versus JetGPT -- Modern Networks for the LHC](https://arxiv.org/abs/2305.10475)
* [High-dimensional and Permutation Invariant Anomaly Detection](https://arxiv.org/abs/2306.03933)
* [Comparison of Point Cloud and Image-based Models for Calorimeter Fast Simulation](https://arxiv.org/abs/2307.04780)
* [PC-Droid: Faster diffusion and improved quality for particle cloud generation](https://arxiv.org/abs/2307.06836)
* [Score-based Diffusion Models for Generating Liquid Argon Time Projection Chamber Images](https://arxiv.org/abs/2307.13687)
* [CaloDiffusion with GLaM for High Fidelity Calorimeter Simulation](https://arxiv.org/abs/2308.03876)
* [Refining Fast Calorimeter Simulations with a Schr\"odinger Bridge](https://arxiv.org/abs/2308.12339)
Expand Down
1 change: 1 addition & 0 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -1415,6 +1415,7 @@ const expandElements = shouldExpand => {
* [Jet Diffusion versus JetGPT -- Modern Networks for the LHC](https://arxiv.org/abs/2305.10475)
* [High-dimensional and Permutation Invariant Anomaly Detection](https://arxiv.org/abs/2306.03933)
* [Comparison of Point Cloud and Image-based Models for Calorimeter Fast Simulation](https://arxiv.org/abs/2307.04780)
* [PC-Droid: Faster diffusion and improved quality for particle cloud generation](https://arxiv.org/abs/2307.06836)
* [Score-based Diffusion Models for Generating Liquid Argon Time Projection Chamber Images](https://arxiv.org/abs/2307.13687)
* [CaloDiffusion with GLaM for High Fidelity Calorimeter Simulation](https://arxiv.org/abs/2308.03876)
* [Refining Fast Calorimeter Simulations with a Schr\"odinger Bridge](https://arxiv.org/abs/2308.12339)
Expand Down

0 comments on commit 7f647ba

Please sign in to comment.