Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

29 add non-cdisc examples to the modules #651

Merged
merged 11 commits into from
Feb 22, 2024
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 52 additions & 13 deletions R/tm_a_pca.R
Original file line number Diff line number Diff line change
Expand Up @@ -18,45 +18,84 @@
#' @templateVar ggnames "Elbow plot", "Circle plot", "Biplot", "Eigenvector plot"
#' @template ggplot2_args_multi
#'
#' @export
#'
#' @examples
#' # general data example
#' library(teal.widgets)
#'
#' # ADSL example
#' data <- teal_data()
#' data <- within(data, {
#' library(nestcolor)
#' USArrests <- USArrests
#' })
#' datanames(data) <- "USArrests"
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_a_pca(
#' "PCA",
#' dat = data_extract_spec(
#' dataname = "USArrests",
#' select = select_spec(
#' choices = variable_choices(
#' data = data[["USArrests"]], c("Murder", "Assault", "UrbanPop", "Rape")
#' ),
#' selected = c("Murder", "Assault"),
#' multiple = TRUE
#' ),
#' filter = NULL
#' ),
#' ggplot2_args = ggplot2_args(
#' labs = list(subtitle = "Plot generated by PCA Module")
#' )
#' )
#' )
#' )
#'
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' # CDISC data example
#' library(teal.widgets)
#'
#' data <- teal_data()
#' data <- within(data, {
#' library(nestcolor)
#' ADSL <- teal.modules.general::rADSL
chlebowa marked this conversation as resolved.
Show resolved Hide resolved
#' ADSL <- rADSL
#' })
#' datanames <- c("ADSL")
#' datanames(data) <- datanames
#' join_keys(data) <- default_cdisc_join_keys[datanames]
#' app <- teal::init(
#' datanames(data) <- "ADSL"
#' join_keys(data) <- default_cdisc_join_keys[datanames(data)]
#'
#' app <- init(
#' data = data,
#' modules = teal::modules(
#' modules = modules(
#' teal.modules.general::tm_a_pca(
#' "PCA",
#' dat = teal.transform::data_extract_spec(
#' dat = data_extract_spec(
#' dataname = "ADSL",
#' select = teal.transform::select_spec(
#' choices = teal.transform::variable_choices(
#' select = select_spec(
#' choices = variable_choices(
#' data = data[["ADSL"]], c("BMRKR1", "AGE", "EOSDY")
#' ),
#' selected = c("BMRKR1", "AGE"),
#' multiple = TRUE
#' ),
#' filter = NULL
#' ),
#' ggplot2_args = teal.widgets::ggplot2_args(
#' ggplot2_args = ggplot2_args(
#' labs = list(subtitle = "Plot generated by PCA Module")
#' )
#' )
#' )
#' )
#'
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
#'
tm_a_pca <- function(label = "Principal Component Analysis",
dat,
plot_height = c(600, 200, 2000),
Expand Down
78 changes: 62 additions & 16 deletions R/tm_a_regression.R
Original file line number Diff line number Diff line change
Expand Up @@ -28,47 +28,90 @@
#'
#' @note For more examples, please see the vignette "Using regression plots" via
#' `vignette("using-regression-plots", package = "teal.modules.general")`.
#' @export
#'
#' @examples
#' # Regression graphs from selected response variable (BMRKR1) and
#' # selected regressors (AGE)
#' # general data example
#' library(teal.widgets)
#'
#' data <- teal_data()
#' data <- within(data, {
#' library(nestcolor)
#' ADSL <- teal.modules.general::rADSL
#' CO2 <- CO2
chlebowa marked this conversation as resolved.
Show resolved Hide resolved
#' })
#' datanames <- c("ADSL")
#' datanames(data) <- datanames
#' join_keys(data) <- default_cdisc_join_keys[datanames]
#' datanames(data) <- c("CO2")
#'
#' app <- teal::init(
#' app <- init(
#' data = data,
#' modules = teal::modules(
#' teal.modules.general::tm_a_regression(
#' modules = modules(
#' tm_a_regression(
#' label = "Regression",
#' response = teal.transform::data_extract_spec(
#' response = data_extract_spec(
#' dataname = "CO2",
#' select = select_spec(
#' label = "Select variable:",
#' choices = "uptake",
#' selected = "uptake",
#' multiple = FALSE,
#' fixed = TRUE
#' )
#' ),
#' regressor = data_extract_spec(
#' dataname = "CO2",
#' select = select_spec(
#' label = "Select variables:",
#' choices = variable_choices(data[["CO2"]], c("conc", "Treatment")),
#' selected = "conc",
#' multiple = TRUE,
#' fixed = FALSE
#' )
#' ),
#' ggplot2_args = ggplot2_args(
#' labs = list(subtitle = "Plot generated by Regression Module")
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' # CDISC data example
#' library(teal.widgets)
#'
#' data <- teal_data()
#' data <- within(data, {
#' library(nestcolor)
#' ADSL <- rADSL
#' })
#' datanames(data) <- "ADSL"
#' join_keys(data) <- default_cdisc_join_keys[datanames(data)]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_a_regression(
#' label = "Regression",
#' response = data_extract_spec(
#' dataname = "ADSL",
#' select = teal.transform::select_spec(
#' select = select_spec(
#' label = "Select variable:",
#' choices = "BMRKR1",
#' selected = "BMRKR1",
#' multiple = FALSE,
#' fixed = TRUE
#' )
#' ),
#' regressor = teal.transform::data_extract_spec(
#' regressor = data_extract_spec(
#' dataname = "ADSL",
#' select = teal.transform::select_spec(
#' select = select_spec(
#' label = "Select variables:",
#' choices = teal.transform::variable_choices(data[["ADSL"]], c("AGE", "SEX", "RACE")),
#' choices = variable_choices(data[["ADSL"]], c("AGE", "SEX", "RACE")),
#' selected = "AGE",
#' multiple = TRUE,
#' fixed = FALSE
#' )
#' ),
#' ggplot2_args = teal.widgets::ggplot2_args(
#' ggplot2_args = ggplot2_args(
#' labs = list(subtitle = "Plot generated by Regression Module")
#' )
#' )
Expand All @@ -77,6 +120,9 @@
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
#'
tm_a_regression <- function(label = "Regression Analysis",
regressor,
response,
Expand Down
42 changes: 34 additions & 8 deletions R/tm_data_table.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,22 +25,45 @@
#' The `DT` package has an option `DT.TOJSON_ARGS` to show `Inf` and `NA` in data tables. If this is something
#' you require then set `options(DT.TOJSON_ARGS = list(na = "string"))` before running the module.
#' Note though that sorting of numeric columns with `NA`/`Inf` will be lexicographic not numerical.
#' @export
#'
#' @examples
#' # general data example
#'
#' data <- teal_data()
#' data <- within(data, {
#' library(nestcolor)
#' ADSL <- teal.modules.general::rADSL
#' iris <- iris
#' })
#' datanames <- c("ADSL")
#' datanames(data) <- datanames
#' join_keys(data) <- default_cdisc_join_keys[datanames]
#' datanames(data) <- c("iris")
#'
#' app <- teal::init(
#' app <- init(
#' data = data,
#' modules = teal::modules(
#' teal.modules.general::tm_data_table(
#' modules = modules(
#' tm_data_table(
#' variables_selected = list(
#' iris = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species")
#' ),
#' dt_args = list(caption = "ADSL Table Caption")
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' # CDISC data example
#' data <- teal_data()
#' data <- within(data, {
#' library(nestcolor)
#' ADSL <- rADSL
#' })
#' datanames(data) <- "ADSL"
#' join_keys(data) <- default_cdisc_join_keys[datanames(data)]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_data_table(
#' variables_selected = list(ADSL = c("STUDYID", "USUBJID", "SUBJID", "SITEID", "AGE", "SEX")),
#' dt_args = list(caption = "ADSL Table Caption")
#' )
Expand All @@ -49,6 +72,9 @@
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
#'
tm_data_table <- function(label = "Data Table",
variables_selected = list(),
datasets_selected = character(0),
Expand Down
82 changes: 65 additions & 17 deletions R/tm_g_association.R
Original file line number Diff line number Diff line change
Expand Up @@ -17,40 +17,85 @@
#'
#' @note For more examples, please see the vignette "Using association plot" via
#' \code{vignette("using-association-plot", package = "teal.modules.general")}.
#' @export
#'
#' @examples
#' # Association plot of selected reference variable (SEX)
#' # against other selected variables (BMRKR1)
#' # general data exapmle
#' library(teal.widgets)
#'
#' data <- teal_data()
#' data <- within(data, {
#' library(nestcolor)
#' ADSL <- teal.modules.general::rADSL
#' CO2 <- CO2
#' factors <- names(Filter(isTRUE, vapply(CO2, is.factor, logical(1L))))
#' CO2[factors] <- lapply(CO2[factors], as.character)
#' })
#' datanames <- c("ADSL")
#' datanames(data) <- datanames
#' join_keys(data) <- default_cdisc_join_keys[datanames]
#' datanames(data) <- c("CO2")
#'
#' app <- teal::init(
#' app <- init(
#' data = data,
#' modules = teal::modules(
#' teal.modules.general::tm_g_association(
#' ref = teal.transform::data_extract_spec(
#' modules = modules(
#' tm_g_association(
#' ref = data_extract_spec(
#' dataname = "CO2",
#' select = select_spec(
#' label = "Select variable:",
#' choices = variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")),
#' selected = "Plant",
#' fixed = FALSE
#' )
#' ),
#' vars = data_extract_spec(
#' dataname = "CO2",
#' select = select_spec(
#' label = "Select variables:",
#' choices = variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")),
#' selected = "Treatment",
chlebowa marked this conversation as resolved.
Show resolved Hide resolved
#' multiple = TRUE,
#' fixed = FALSE
#' )
#' ),
#' ggplot2_args = ggplot2_args(
#' labs = list(subtitle = "Plot generated by Association Module")
#' )
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' # CDISC data example
#' library(teal.widgets)
#'
#' data <- teal_data()
#' data <- within(data, {
#' library(nestcolor)
#' ADSL <- rADSL
#' })
#' datanames(data) <- "ADSL"
#' join_keys(data) <- default_cdisc_join_keys[datanames(data)]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_g_association(
#' ref = data_extract_spec(
#' dataname = "ADSL",
#' select = teal.transform::select_spec(
#' select = select_spec(
#' label = "Select variable:",
#' choices = teal.transform::variable_choices(
#' choices = variable_choices(
#' data[["ADSL"]],
#' c("SEX", "RACE", "COUNTRY", "ARM", "STRATA1", "STRATA2", "ITTFL", "BMRKR2")
#' ),
#' selected = "RACE",
#' fixed = FALSE
#' )
#' ),
#' vars = teal.transform::data_extract_spec(
#' vars = data_extract_spec(
#' dataname = "ADSL",
#' select = teal.transform::select_spec(
#' select = select_spec(
#' label = "Select variables:",
#' choices = teal.transform::variable_choices(
#' choices = variable_choices(
#' data[["ADSL"]],
#' c("SEX", "RACE", "COUNTRY", "ARM", "STRATA1", "STRATA2", "ITTFL", "BMRKR2")
#' ),
Expand All @@ -59,7 +104,7 @@
#' fixed = FALSE
#' )
#' ),
#' ggplot2_args = teal.widgets::ggplot2_args(
#' ggplot2_args = ggplot2_args(
#' labs = list(subtitle = "Plot generated by Association Module")
#' )
#' )
Expand All @@ -68,6 +113,9 @@
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
#'
tm_g_association <- function(label = "Association",
ref,
vars,
Expand Down
Loading
Loading