Skip to content

Group_norm backward kernel optimization part 2 #1719

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 21 additions & 26 deletions src/ATen/native/xpu/sycl/GroupNormKernels.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
#include <ATen/native/xpu/sycl/GroupReduceUtils.h>
#include <ATen/native/xpu/sycl/Loops.h>
#include <ATen/native/xpu/sycl/SharedReduceOps.h>
#include <ATen/ops/ones.h>
#include <comm/MemoryFormat.h>
#include <comm/XPUMathCompat.h>
#include <comm/xpu_aten.h>
Expand Down Expand Up @@ -1408,7 +1409,7 @@ void group_norm_backward_kernel_impl(
Tensor c3 = at::empty({N, G}, X.options().dtype(kAccType));
T_ACC* c2_data = c2.mutable_data_ptr<T_ACC>();
T_ACC* c3_data = c3.mutable_data_ptr<T_ACC>();

Tensor dummy_gamma = at::ones({1, G, D}, X.options().dtype(kAccType));
if (gamma.defined()) {
auto iter = TensorIteratorConfig()
.check_all_same_dtype(std::is_same<T, T_ACC>::value)
Expand All @@ -1417,6 +1418,14 @@ void group_norm_backward_kernel_impl(
.add_owned_const_input(gamma.view({1, G, D}))
.build();
gpu_kernel(iter, GroupNormBackwardC1Functor<T, T_ACC>());
} else {
auto iter = TensorIteratorConfig()
.check_all_same_dtype(std::is_same<T, T_ACC>::value)
.add_output(c1)
.add_owned_const_input(rstd.view({N, G, 1}))
.add_owned_const_input(dummy_gamma.view({1, G, D}))
.build();
gpu_kernel(iter, GroupNormBackwardC1Functor<T, T_ACC>());
}

wg_size = (C / G) < get_group_reduce_group_size(simd)
Expand All @@ -1440,31 +1449,17 @@ void group_norm_backward_kernel_impl(
c2_data,
c3_data);

if (gamma.defined()) {
auto iter = TensorIteratorConfig()
.check_all_same_dtype(std::is_same<T, T_ACC>::value)
.resize_outputs(false)
.add_owned_output(dX.view({N * G, D, HxW}))
.add_owned_const_input(dY.view({N * G, D, HxW}))
.add_owned_const_input(X.view({N * G, D, HxW}))
.add_owned_const_input(c1.view({N * G, D, 1}))
.add_owned_const_input(c2.view({N * G, 1, 1}))
.add_owned_const_input(c3.view({N * G, 1, 1}))
.build();
gpu_kernel(iter, GroupNormBackwardDXFunctor<T, T_ACC>());
} else {
auto iter = TensorIteratorConfig()
.check_all_same_dtype(std::is_same<T, T_ACC>::value)
.resize_outputs(false)
.add_owned_output(dX.view({N * G, D * HxW}))
.add_owned_const_input(dY.view({N * G, D * HxW}))
.add_owned_const_input(X.view({N * G, D * HxW}))
.add_owned_const_input(rstd.view({N * G, 1}))
.add_owned_const_input(c2.view({N * G, 1}))
.add_owned_const_input(c3.view({N * G, 1}))
.build();
gpu_kernel(iter, GroupNormBackwardDXFunctor<T, T_ACC>());
}
auto iter = TensorIteratorConfig()
.check_all_same_dtype(std::is_same<T, T_ACC>::value)
.resize_outputs(false)
.add_owned_output(dX.view({N * G, D, HxW}))
.add_owned_const_input(dY.view({N * G, D, HxW}))
.add_owned_const_input(X.view({N * G, D, HxW}))
.add_owned_const_input(c1.view({N * G, D, 1}))
.add_owned_const_input(c2.view({N * G, 1, 1}))
.add_owned_const_input(c3.view({N * G, 1, 1}))
.build();
gpu_kernel(iter, GroupNormBackwardDXFunctor<T, T_ACC>());
}

if (dgamma.defined() || dbeta.defined()) {
Expand Down