Skip to content

intergavg/aws-streamer

 
 

Repository files navigation

AWS Streamer

The AWS Streamer is a collection of video processing and streaming tools for AWS platform. It will enable users to stream from multiple camera sources, process the video streams and upload to the cloud and/or local storage. It can be used standalone on the edge device, inside AWS Lambda functions, AWS ECS container or running on an AWS IoT Greengrass as a Lambda.

Key FeaturesBuildUsageNotesDebuggingSecurityLicense

Key Features

List of features provided by this library:

  • Streams from multiple cameras in parallel locally and to the cloud
  • Upload video streams in chunks to the S3 and/or store in the local disk
  • Upload video streams directly to Kinesis Video Streams
  • Perform ML inference on the video stream
  • Run computer vision algorithm on the video streams
  • Preview live stream in the browser

Build

Prerequisites

Install

  • With pip:

    pip install git+https://github.com/awslabs/aws-streamer.git

    or

    git clone https://github.com/awslabs/aws-streamer.git
    cd aws-streamer
    pip install -v .

    To set extra CMake flags (see below table):

    pip install -v . --install-option "build_ext" --install-option "--cmake-args=-DBUILD_KVS=ON"
  • In place:

    virtualenv venv
    source venv/bin/activate
    
    pip install --upgrade wheel pip setuptools
    pip install --upgrade --requirement requirements.txt
    
    ./build.sh [optional:CMAKE_FLAGS]

CMake Options

CMake flag Description Default value
-DBUILD_KVS Build KVS GStreamer plug-in OFF
-DBUILD_KVS_WEBRTC Build KVS WebRTC binaries OFF
-BUILD_NEO_DLR Build SageMaker NEO runtime OFF
-BUILD_MXNET Build MXnet GStreamer plug-in OFF

Usage

Using JSON Configuration

cd examples/test_app
python3 app.py ../configs/testsrc_display.json

Demos

There are two full-blown demos available:

Click on links above to read more and see detailed architecture.

Using AWS Streamer as SDK

import awstreamer

client = awstreamer.client()
  • To stream from your camera to the KVS:

    client.start({
        "source": {
            "name": "videotestsrc",
            "is-live": True,
            "do-timestamp": True,
            "width": 640,
            "height": 480,
            "fps": 30
        },
        "sink": {
            "name": "kvssink",
            "stream-name": "TestStream"
        }
    })
  • To run multiple pipelines in parallel asynchronously (i.e. without waiting for the pipeline to finish):

    client.schedule({
        "pipeline_0": {
            "source": {
                "name": "videotestsrc",
                "is-live": True,
                "do-timestamp": True,
                "width": 640,
                "height": 480,
                "fps": 30
            },
            "sink": {
                "name": "kvssink",
                "stream-name": "TestStream0"
            }
        },
        "pipeline_1": {
            "source": {
                "name": "videotestsrc",
                "is-live": True,
                "do-timestamp": True,
                "width": 1280,
                "height": 720,
                "fps": 30
            },
            "sink": {
                "name": "kvssink",
                "stream-name": "TestStream1"
            }
        }
    })
  • To perform ML inference on the video stream:

    def my_callback(metadata):
        print("Inference results: " + str(metadata))
    
    client.start({
        "pipeline": "DeepStream",
        "source": {
            "name": "filesrc",
            "location": "/path/to/video.mp4",
            "do-timestamp": False
        },
        "nvstreammux": {
            "width": 1280,
            "height": 720,
            "batch-size": 1
        },
        "nvinfer": {
            "enabled": True,
            "config-file-path": "/path/to/nvinfer_config.txt"
        },
        "callback": my_callback
    })
  • To start recording of video segments to disk:

    client.schedule({
        "camera_0": {
            "pipeline": "DVR",
            "source": {
                "name": "videotestsrc",
                "is-live": True,
                "do-timestamp": True,
                "width": 640,
                "height": 480,
                "fps": 30
            },
            "sink": {
                "name": "splitmuxsink",
                "location": "/video/camera_0/output_%02d.mp4",
                "segment_duration": "00:01:00",
                "time_to_keep_days": 1
            }
        }
    })

    The command above will start recording 1-minute video segments to the given location.

  • To get list of files within given timestamp:

    from awstreamer.utils.video import get_video_files_in_time_range
    
    file_list = get_video_files_in_time_range(
        path = "/video/camera_0/",
        timestamp_from = "2020-08-05 13:03:47",
        timestamp_to = "2020-08-05 13:05:40",
    )
  • To merge video files into a single one:

    from awstreamer.utils.video import merge_video_files
    
    merged = merge_video_files(
        files = file_list,
        destination_file = "merged.mkv"
    )
  • To get video frame from any point in the pipeline:

    def my_callback(buffer):
        '''
        This function will be called on every frame.
        Buffer is a ndarray, do with it what you like!
        '''
        print("Buffer info: %s, %s, %s" % (str(type(buffer)), str(buffer.dtype), str(buffer.shape)))
    
    client.start({
        "pipeline": {
            "source": "videotestsrc",
            "source_filter": "capsfilter",
            "sink": "autovideosink"
        },
        "source": {
            "is-live": True,
            "do-timestamp": True
        },
        "source_filter": {
            "caps": "video/x-raw,width=640,height=480,framerate=30/1"
        },
        "source_filter": {
            "probes": {
                "src": my_callback
            }
        }
    })

    Above code will attach the probe to the source (outbound) pad of the source_filter plug-in.

Notes

If you use AWS plug-in (e.g. KVS) outside of AWS environment (i.e. not in AWS Greengrass IoT, AWS Lambda, etc.), remember to set the following env variables:

export AWS_ACCESS_KEY_ID=xxxxxxxxx
export AWS_SECRET_ACCESS_KEY=xxxxxxxxxx
export AWS_DEFAULT_REGION=us-east-1 (for example)

Debugging

To enable more debugging information from Gstreamer elements, set this env variable:

export GST_DEBUG=4

More details here: https://gstreamer.freedesktop.org/documentation/tutorials/basic/debugging-tools.html?gi-language=c

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

About

Video Processing for AWS

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 53.3%
  • C++ 23.1%
  • CMake 9.2%
  • HTML 8.6%
  • C 4.3%
  • Dockerfile 1.0%
  • Shell 0.5%