Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(backend): revert non-blocking device transfer #6624

Merged
merged 1 commit into from
Jul 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 3 additions & 5 deletions invokeai/backend/ip_adapter/ip_adapter.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,16 +124,14 @@ def __init__(
self.device, dtype=self.dtype
)

def to(
self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, non_blocking: bool = False
):
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None:
self.device = device
if dtype is not None:
self.dtype = dtype

self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self._image_proj_model.to(device=self.device, dtype=self.dtype)
self.attn_weights.to(device=self.device, dtype=self.dtype)

def calc_size(self) -> int:
# HACK(ryand): Fix this issue with circular imports.
Expand Down
94 changes: 29 additions & 65 deletions invokeai/backend/lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@

from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
from invokeai.backend.util.devices import TorchDevice


class LoRALayerBase:
Expand Down Expand Up @@ -57,14 +56,9 @@ def calc_size(self) -> int:
model_size += val.nelement() * val.element_size()
return model_size

def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.bias = self.bias.to(device=device, dtype=dtype)


# TODO: find and debug lora/locon with bias
Expand Down Expand Up @@ -106,19 +100,14 @@ def calc_size(self) -> int:
model_size += val.nelement() * val.element_size()
return model_size

def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype, non_blocking=non_blocking)
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)

self.up = self.up.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.down = self.down.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)

if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.mid = self.mid.to(device=device, dtype=dtype)


class LoHALayer(LoRALayerBase):
Expand Down Expand Up @@ -167,23 +156,18 @@ def calc_size(self) -> int:
model_size += val.nelement() * val.element_size()
return model_size

def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)

self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t1 = self.t1.to(device=device, dtype=dtype)

self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t2 = self.t2.to(device=device, dtype=dtype)


class LoKRLayer(LoRALayerBase):
Expand Down Expand Up @@ -264,32 +248,27 @@ def calc_size(self) -> int:
model_size += val.nelement() * val.element_size()
return model_size

def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)

if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)

if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)

if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.t2 = self.t2.to(device=device, dtype=dtype)


class FullLayer(LoRALayerBase):
Expand Down Expand Up @@ -319,15 +298,10 @@ def calc_size(self) -> int:
model_size += self.weight.nelement() * self.weight.element_size()
return model_size

def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)

self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.weight = self.weight.to(device=device, dtype=dtype)


class IA3Layer(LoRALayerBase):
Expand Down Expand Up @@ -359,16 +333,11 @@ def calc_size(self) -> int:
model_size += self.on_input.nelement() * self.on_input.element_size()
return model_size

def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
):
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
super().to(device=device, dtype=dtype)

self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.on_input = self.on_input.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)


AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
Expand All @@ -390,15 +359,10 @@ def __init__(
def name(self) -> str:
return self._name

def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype, non_blocking=non_blocking)
layer.to(device=device, dtype=dtype)

def calc_size(self) -> int:
model_size = 0
Expand Down Expand Up @@ -521,7 +485,7 @@ def from_checkpoint(
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()

layer.to(device=device, dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer

return model
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -289,11 +289,9 @@ def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(
target_device, copy=True, non_blocking=TorchDevice.get_non_blocking(target_device)
)
new_dict[k] = v.to(target_device, copy=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device, non_blocking=TorchDevice.get_non_blocking(target_device))
cache_entry.model.to(target_device)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)
Expand Down
15 changes: 5 additions & 10 deletions invokeai/backend/model_patcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,15 +139,12 @@ def apply_lora(
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(dtype=torch.float32, non_blocking=TorchDevice.get_non_blocking(device))
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(
device=TorchDevice.CPU_DEVICE,
non_blocking=TorchDevice.get_non_blocking(TorchDevice.CPU_DEVICE),
)
layer.to(device=TorchDevice.CPU_DEVICE)

assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
if module.weight.shape != layer_weight.shape:
Expand All @@ -156,17 +153,15 @@ def apply_lora(
layer_weight = layer_weight.reshape(module.weight.shape)

assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
module.weight += layer_weight.to(dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device))
module.weight += layer_weight.to(dtype=dtype)

yield # wait for context manager exit

finally:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(
weight, non_blocking=TorchDevice.get_non_blocking(weight.device)
)
model.get_submodule(module_key).weight.copy_(weight)

@classmethod
@contextmanager
Expand Down
7 changes: 1 addition & 6 deletions invokeai/backend/onnx/onnx_runtime.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,12 +190,7 @@ def __call__(self, **kwargs):
return self.session.run(None, inputs)

# compatability with RawModel ABC
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
pass

# compatability with diffusers load code
Expand Down
7 changes: 1 addition & 6 deletions invokeai/backend/raw_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,10 +20,5 @@ class RawModel(ABC):
"""Abstract base class for 'Raw' model wrappers."""

@abstractmethod
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
pass
9 changes: 2 additions & 7 deletions invokeai/backend/textual_inversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,17 +65,12 @@ def from_checkpoint(

return result

def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
if not torch.cuda.is_available():
return
for emb in [self.embedding, self.embedding_2]:
if emb is not None:
emb.to(device=device, dtype=dtype, non_blocking=non_blocking)
emb.to(device=device, dtype=dtype)

def calc_size(self) -> int:
"""Get the size of this model in bytes."""
Expand Down
12 changes: 0 additions & 12 deletions invokeai/backend/util/devices.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,15 +112,3 @@ def empty_cache(cls) -> None:
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]

@staticmethod
def get_non_blocking(to_device: torch.device) -> bool:
"""Return the non_blocking flag to be used when moving a tensor to a given device.
MPS may have unexpected errors with non-blocking operations - we should not use non-blocking when moving _to_ MPS.
When moving _from_ MPS, we can use non-blocking operations.

See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28
"""
return False if to_device.type == "mps" else True
Loading