A pythonic way of writting latex.
I always found it boring and a pain to write some mathematical formulaes in latex. Mainly those with a lot of \frac{x}{Y} stuff.
That is why i thought of implementing this small template system for latex, it is a nap to write some mathematical formulaes when compared to latex.
Works on python3+ only
pip install lax
That is all.
With basic operations:
[tau@sigma ~]$ lax -c 'x * (2 - y) * yz'
x\cdot \left(2-y\right)\cdot yz
[tau@sigma ~]$
With roots and fractions:
[tau@sigma ~]$ lax -c '2 ^ x/(2 - y)'
\sqrt[2]{\left(\frac{x}{2-y}\right)}
Notice that to use the root you use ^:
[tau@sigma ~]$ lax -c '3/2 ^ x * (3-yz)'
\sqrt[\left(\frac{3}{2}\right)]{\left(x\cdot \left(3-yz\right)\right)}
[tau@sigma ~]$ lax -c '2 ^ (3 ^ (x - 1))'
\sqrt[2]{\sqrt[3]{\left(x-1\right)}}
Due to the precedence of ^ in python the / * + - are evaluated first.
With exponents:
[tau@sigma ~]$ lax -c '2 ** (x - 2)'
\left(x-2\right)^{2}
[tau@sigma ~]$ lax -c '(2 ** x) ** 4'
{\left({2}^{x}\right)}^{4}
[tau@sigma ~]$ lax -c '2 ** (x ** 4)'
{2}^{\left({x}^{4}\right)}
With functions:
[tau@sigma ~]$ lax -c '2 * f((x-2) * 3)/(2-xy)'
\frac{2\cdot f(\left(x-2\right)\cdot 3)}{2-xy}
[tau@sigma ~]$ lax -c 'xyz^(alpha(x-2))'
\sqrt[xyz]{alpha(x-2)}
[tau@sigma ~]$
Notice that if you want to omit multiplication sign you can do:
[tau@sigma ~]$ lax -c '(x-3)(x+y)'
\left(x-3\right)\left(x+y\right)
[tau@sigma ~]$ lax -c '(x-3)(x+y) * 2'
\left(x-3\right)\left(x+y\right)\cdot 2
[tau@sigma ~]$ lax -c '(x-3)(x+y)(x-2)(x ** (x-y))'
\left(x-3\right)\left(x+y\right)\left(x-2\right)\left({x}^{\left(x-y\right)}\right)
[tau@sigma ~]$ lax -c 'x * (x-2)(x/(x-5))((x-3)/(x**(2-x)))'
x\cdot \left(x-2\right)\left(\frac{x}{x-5}\right)\left(\frac{x-3}{{x}^{\left(2-x\right)}}\right)
When omiting multiplication sign with functions:
[tau@sigma ~]$ lax -c 'x * f(x-3)((x-2)/(x-(y^2)))'
x\cdot \left(f\left(x-3\right)\right)\left(\frac{x-2}{x-\sqrt[y]{2}}\right)
A really convoluted example:
[tau@sigma ~]$ lax -c 'x * (x-3) (f(x-3) - 2) (x ** (x-3/(x-2)))'
x\cdot \left(x-3\right)\left(f\left(x-3\right)-2\right)\left({x}^{\left(x-\frac{3}{x-2}\right)}\right)